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Abstract
Background  The genetic susceptibility association between viral infection and the risk of colorectal cancer (CRC) has 
not been established.

Methods  We conducted two-sample Mendelian randomization (MR) analysis using genome-wide association study 
(GWAS) data. In addition to traditional MR methods, we employed several other approaches, including cML, ConMix, 
MR-RAPS, and dIVW, to comprehensively assess causal effects. Sensitivity analyses were also performed to ensure the 
robustness of the results.

Results  After sensitivity analysis, presence of SNPs linked to increased susceptibility to cold sores infection was 
found to decrease the risk of CRC (OR: 0.73, 95% CI: 0.57–0.93, P = 0.01). In subgroup analysis, presence of SNPs linked 
to increased susceptibility to viral hepatitis (OR: 0.89, 95% CI: 0.81–0.98, P = 0.02) and infectious mononucleosis (OR: 
0.91, 95% CI: 0.84–0.98, P = 0.02) were associated with a decreased risk of colon cancer, while measles virus (OR: 1.41, 
95% CI: 1.07–1.85, P = 0.01) was associated with an increased risk of colon cancer. Presence of SNPs linked to increased 
susceptibility to herpes zoster (OR: 1.26, 95% CI: 1.05–1.52, P = 0.01) was associated with an increased risk of rectal 
cancer, while infectious mononucleosis (OR: 0.809, 95% CI: 0.80–0.98, P = 0.02) was associated with a decreased risk.

Conclusion  The study provides the first evidence of the genetic susceptibility associations between different viral 
infections and CRC, enhancing our understanding of the etiology of CRC.
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Introduction
Colorectal cancer (CRC) is the third most common 
cancer and the fourth leading cause of cancer-related 
deaths worldwide [1]. While screening has reduced the 
incidence and mortality of CRC, it is often constrained, 
particularly in resource-limited settings [2–4]. Thus, 
identifying risk factors for CRC effectively could alleviate 
the global burden of CRC and prove to be an attractive 
strategy [5].

Recent studies suggest that viral infections may play 
a potential role in the development of CRC [6]. Viruses 
such as cytomegalovirus and human papillomavi-
rus (HPV16, HPV18) have been found to have a higher 
prevalence in tumor-associated colorectal tissues [7]. 
Meta-analysis indicates a statistically significant pres-
ence of HPV infection levels in CRC tumor tissues [8]. 
Laghi et al. revealed viral infections present in 81-89% 
of CRC tissues, with viral infection being predominant 
[9]. However, different studies have observed inconsis-
tent results. For instance, serum positivity rates indicat-
ing viral infection based on antibody titers did not show 
significant differences between CRC cases and healthy 
controls [7]. Additionally, the potential contamination or 
infection and the timeline of CRC development are often 
unclear, and observational studies cannot avoid unknown 
confounders. Therefore, there is an urgent need for more 
evidence to explore the risk relationship between viral 
infections and CRC.

Genome-wide association studies (GWAS) have iden-
tified genetic variations associated with a wide range of 
cancers, and Mendelian randomization (MR) based on 
GWAS provides a method for causal inference in epi-
demiology [10]. Because genetic variations are fixed at 
birth, MR results are less susceptible to confounding 
effects and avoid some limitations of observational stud-
ies [11]. MR studies identifying risk factors have been 
widely applied in CRC [12, 13]. However, research on the 
risk effects of viral infections on CRC is still lacking.

Therefore, this study employed two-sample Mendelian 
randomization (MR) to assess the genetic susceptibility 
association of various viruses including herpes simplex 
virus, hepatitis virus, rubella virus, measles virus, severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
and human immunodeficiency virus (HIV) on CRC. 
Additionally, considering the high heterogeneity of gas-
trointestinal tumors, we further analyzed the genetic sus-
ceptibility association between viral infections and CRC 
subtypes.

Materials and methods
Study design
The overall research process was illustrated in Fig.  1A. 
This study adhered to the three major assumptions of MR 
and utilized the traditional two-sample analysis method, 
with viral infections as exposure and CRC and its sub-
types as outcomes, to assess the genetic susceptibility 

Fig. 1  A: Research flowcharts. B: Preliminary analysis of risk effects
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association of viral infections on CRC risk. This study fol-
lowed MR standardization reporting guidelines (Supple-
mentary STROBE-MR checklist).

Viral GWAS source
The studied viruses included herpes simplex virus, 
hepatitis virus, rubella virus, measles virus, poliovirus, 
Epstein-Barr virus (EBV), human immunodeficiency 
virus (HIV), human papillomavirus (HPV16, HPV18), 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), and mumps virus. Summary statistics for virus 
GWAS were obtained from 23andMe [14] and the r10 
version of the FinnGen database [15].

The GWAS analysis from 23andMe was based on self-
reported infection history questionnaires. Herpes sim-
plex virus included 25,108 cases of cold sores and 63,332 
controls from 23andMe [14], while the FinnGen dataset 
included 3,723 cases of herpes simplex virus infection 
and 396,378 controls, and 5,488 cases of herpes zoster 
infection and 396,378 controls [15]. Hepatitis infection 
data were obtained from FinnGen, including 2,320 cases 
and 409,861 controls. Poliovirus data were also from 
FinnGen, including 396 cases and 409,849 controls [15]. 
Rubella virus data were derived from 23andMe, with 
12,000 cases and 71,597 controls [14], and from FinnGen, 
with 1,041 cases and 396,378 controls [15]. Measles virus 
data were obtained from 23andMe, with 38,219 cases 
and 47,279 controls [14], and from FinnGen, with 351 
cases and 396,378 controls [15]. Mumps virus data were 
derived from 23andMe, with 31,227 cases and 68,446 
controls [14], and from FinnGen, with 827 cases and 
400,974 controls [15]. Infectious mononucleosis (EBV 
infection) data were obtained from 23andMe, with 17,457 
cases and 68,446 controls [14], and from FinnGen, with 
2,979 cases and 400,974 controls [15]. HPV infection data 
were sourced from the study by Shure et al., including 
1,388 individuals of European ancestry [16]. COVID-19 
data were obtained from the COVID-19 Host Genetics 
Initiative (HGI) r7 release (https://www.covid19hg.org/), 
including 13,769 cases and 1,072,442 controls [17]. Addi-
tionally, the FinnGen dataset included 2,856 confirmed 
COVID-19 cases and 405,232 controls [15].

Outcome GWAS sources
CRC GWAS data were obtained from the study by 
Huyghe et al., including 11,835 cases of European ances-
try and 11,856 controls [18]. Additionally, subgroup anal-
yses for rectal cancer and colon cancer were conducted 
using large GWAS summary statistics from the Pan-UK 
Biobank (https://pan.ukbb.broadinstitute.org/), which 
included 3,856 colon cancer cases and 390,596 controls, 
and 2,705 rectal cancer cases and 386,740 controls. The 
generalized mixed model association test framework was 
used for multi-ancestry analysis of 7,228 phenotypes, 

including 16,131 GWAS, adjusted for age, sex, age*sex, 
age^2, age^2*sex, and the first 10 principal components 
[19].

Genetic factors that may influence infection and outcome 
risk
To further investigate the genetic factors that may 
increase the risk of viral infections and cancer, 
we analyzed 1,400 blood metabolites (GWAS ID: 
GCST90199621-GCST90201020). The GWAS for these 
metabolites adjusted for age, sex, time since last meal or 
drink, genotyping batch, and the top ten genetic princi-
pal components. Linear regression was performed on 
the metabolites and metabolite ratios [20]. Due to the 
inability to obtain sufficient SNPs at the significance 
threshold of 5 × 10− 8, we used a more lenient significance 
threshold of 1 × 10− 5. For all metabolite analysis results, 
only those where all MR directions remained consistent 
were included in the subsequent mediation analysis. We 
employed the traditional two-step method, the coeffi-
cient product test, to assess the overall effects of metabo-
lites, viral infections, and outcomes.

Mendelian randomization analysis
In the MR analysis, we could not obtain enough instru-
mental variables (IVs) based on the significance thresh-
old (P < 5 × 10− 8). Therefore, we relaxed the threshold to 
P < 5 × 10− 6, with genetic variants clustered at r2 < 0.001 
within a 10,000  kb physical window. Additionally, IVs 
with an F-statistic less than 10 were filtered out to avoid 
weak instrument bias. The F-statistic was calculated as 
(beta/se)2 [21]. In the traditional MR analysis, inverse-
variance weighted (IVW) was used as the primary 
method. Besides, we employed multiple MR methods to 
evaluate risk associations, including constrained maxi-
mum likelihood-based MR (cML), contamination mix-
ture (ConMix), robust adjusted profile score (MR-RAPS), 
and debiased inverse-variance weighted method (dIVW) 
[22–25]. For single instrumental variables, the Wald ratio 
method was used to evaluate causal effects. Addition-
ally, considering the directionality in MR analysis, we 
employed the Steiger method to ensure the correct analy-
sis direction [26].

In the sensitivity analysis, Cochran’s Q statistic was 
used to assess heterogeneity, with a P-value ≤ 0.05 indi-
cating the presence of heterogeneity [27]. We used 
MR-Egger and Mendelian Randomization Pleiotropy 
RESidual Sum and Outlier (MR-PRESSO) to evaluate 
the presence of horizontal pleiotropy [28, 29]. When 
horizontal pleiotropy was detected, MR-PRESSO was 
employed to remove outlier SNPs [29].

https://www.covid19hg.org/
https://pan.ukbb.broadinstitute.org/
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Results
The genetic susceptibility association between viral 
infections and colorectal cancer
After extracting exposure-related IVs, the results showed 
that all IVs had F-values greater than 10, indicating that 
the current analysis did not suffer from weak instrument 
bias (Table S2). In all analyses, eight causal associations 
were identified after filtering with the Steiger method 
(all P < 0.05) (Fig.  1B). Tables S3-S8 display the causal 
effects and sensitivity analyses for all viral infections and 
outcomes.

For CRC, in the 23andMe cohort, the IVW method 
indicated that presence of SNPs linked to increased sus-
ceptibility to cold sores significantly reduced risk of CRC 
(OR: 0.73, 95% CI: 0.57–0.93, P = 0.01) (Table S3) (Fig. 2). 
Additionally, various MR methods showed consistent 
effect directions (beta < 0) (Figure S1), suggesting that the 
current results provide a consistent risk estimate. In the 
sensitivity analysis, no pleiotropic associations were iden-
tified (Table S4).

The genetic susceptibility association between viral 
infections and colon cancer
For colon cancer, according to the IVW method (Fig. 3), 
presence of SNPs linked to increased susceptibility to 
viral hepatitis reduced the risk of colon cancer (OR: 0.89, 
95% CI: 0.81–0.98, P = 0.02) (Table S5). Presence of SNPs 
linked to increased susceptibility to infectious mononu-
cleosis also reduced the risk of colon cancer (OR: 0.91, 
95% CI: 0.84–0.98, P = 0.02) (Table S5). In the 23andMe 
cohort, presence of SNPs linked to increased suscepti-
bility to measles virus increased the risk of colon cancer 
(OR: 1.41, 95% CI: 1.07–1.85, P = 0.01) (Table S5). How-
ever, this effect was not significant in FinnGen, but the 
direction of effect remained consistent. Furthermore, for 
the above analyses, all MR methods obtained consistent 
risk estimates (Figure S2). In sensitivity analysis, no sig-
nificant pleiotropic interference was found (Table S6).

The genetic susceptibility association between viral 
infections and rectal cancer
For rectal cancer, in the FinnGen cohort, the IVW 
method showed that presence of SNPs linked to increased 

Fig. 2  Genetic susceptibility association between viral infections and colorectal cancer risk
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susceptibility to herpes zoster virus increased the risk 
of rectal cancer (OR: 1.26, 95% CI: 1.05–1.52, P = 0.01), 
while presence of SNPs linked to increased susceptibil-
ity to infectious mononucleosis reduced the risk of rectal 
cancer (OR: 0.809, 95% CI: 0.80–0.98, P = 0.02). Presence 
of SNPs linked to increased susceptibility to mumps 
virus increased the risk of rectal cancer (OR: 1.12, 95% 
CI: 1.01–1.24, P = 0.03) (Fig. 4) (Table S7). However, this 
effect did not remain consistent between FinnGen and 
23andMe. Except for herpes zoster, most MR methods 
for other phenotypes provided the same direction of risk, 
but most MR analyses for herpes zoster virus remained 
consistent (Figure S3). In sensitivity analysis, no signifi-
cant evidence of pleiotropy was found (Table S8).

Genetic susceptibility to blood metabolites, viral infection, 
and outcomes
After summarizing all consistent MR direction results, 
the current consistent estimates were only present for 
rectum cancer. In the genetic susceptibility analysis of 
zoster and rectum cancer, we found that presence of 
SNPs linked to increased susceptibility to X-23,997 lev-
els decreased the risk of zoster infection (OR: 0.88, 95% 

CI: 0.77–0.99, P = 0.035) and rectum cancer (OR: 0.84, 
95% CI: 0.72–0.99, P = 0.036). Presence of SNPs linked to 
increased susceptibility to the ratio of cysteinylglycine to 
taurine decreased the risk of zoster infection (OR: 0.90, 
95% CI: 0.83–0.98, P = 0.020) and rectum cancer (OR: 
0.85, 95% CI: 0.74–0.97, P = 0.014). In the genetic sus-
ceptibility analysis of EBV and rectum cancer, presence 
of SNPs linked to increased susceptibility to cortisone 
levels decreased the risk of EBV infection (OR: 0.79, 
95% CI: 0.65–0.95, P = 0.014) and rectum cancer (OR: 
0.82, 95% CI: 0.68–0.99, P = 0.036). Presence of SNPs 
linked to increased susceptibility to phenylpyruvate lev-
els decreased the risk of EBV infection (OR: 0.84, 95% CI: 
0.71–0.99, P = 0.038) and rectum cancer (OR: 0.86, 95% 
CI: 0.75–0.99, P = 0.034) (Table S9). However, significant 
mediators were not identified in the mediation analysis 
(Table S10). Nevertheless, the current results still pro-
vide some reference for the genetic susceptibility to viral 
infection and rectum cancer.

Fig. 3  Genetic susceptibility association between viral infections and colon cancer risk
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Discussion
In this study, we assessed the genetic susceptibility asso-
ciation between viral infections and CRC, identifying 
potential susceptibility factors. Indeed, conflicting views 
persist regarding the genetic susceptibility to viral infec-
tions and CRC risk, making causal inference challenging 
due to limitations such as small sample sizes and inher-
ent biases. Therefore, we utilized MR to elucidate these 
relationships. The results revealed potential genetic asso-
ciations between herpes zoster virus, infectious mononu-
cleosis, mumps, viral hepatitis, and CRC and its subtypes.

Our results indicated that presence of SNPs linked to 
increased susceptibility to cold sores decreases the risk of 
CRC (OR = 0.73, P = 0.01), although this association was 
only observed in the 23andMe dataset. In herpes zoster 
virus infection, there were no definitive results indicat-
ing the causal estimate of all herpes zoster viruses on 
CRC risk. In the case of herpes zoster virus infection, 
there were no clear results indicating a causal estimate 
of all herpes zoster viruses for CRC risk. In the FinnGen 
cohort, herpes zoster is primarily caused by varicella-
zoster virus (VZV), while cold sores is mainly caused by 

herpes simplex virus (HSV) in 23andMe. A similar trend 
was observed in FinnGen’s herpes simplex virus infec-
tion (OR = 0.95), indicating that presence of SNPs linked 
to increased susceptibility to HSV may reduce the risk 
of CRC. Due to the neurotropic nature of HSV, studies 
have confirmed its ability to selectively infect and destroy 
tumors within the central nervous system while preserv-
ing normal neurons [30]. The deletion of the g34.5 gene 
in HSV infection affects the activity of the mammalian 
protein GADD 34. When infected, this leads to an upreg-
ulation of the protein, which in turn inhibits protein syn-
thesis. Additionally, infected cells perceive the damage 
caused by viral infection and enter a programmed cell 
death pathway rather than attempting repair or contin-
ued survival [31, 32]. Previous studies have demonstrated 
that targeted HSV therapy can effectively infect and kill 
CRC cells, and inhibit liver metastasis [33]. Therefore, 
our MR results further reinforce these previous findings.

Considering the heterogeneity of gastrointestinal 
tumors, in subgroup analyses, we found that presence 
of SNPs linked to increased susceptibility to hepatitis 
virus infection reduced the risk of colon cancer. Unlike 

Fig. 4  Genetic susceptibility association between viral infections and rectal cancer risk
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previous studies suggesting that chronic hepatitis virus 
infection increases the risk of chronic inflammatory 
bowel disease or adenomatous polyps, thereby increas-
ing the risk of CRC [34], this association is often attrib-
uted to the sustained role of inflammatory mechanisms 
in the long-term development of CRC. However, Song 
et al. found that chronic hepatitis reduces CRC liver 
metastasis and prolongs survival time [35]. Similar trends 
were also observed in the study by Qiu et al. [36]. Fur-
thermore, hepatitis viruses may enhance the cytotoxic-
ity of cytotoxic T lymphocytes [37], which could explain 
some potential connections. However, it is still unclear 
to differentiate between infection status and infection 
type, and specific mechanisms exploration is lacking. 
Therefore, additional validation is needed for the current 
associations.

For measles virus, there was a similar trend between 
FinnGen and 23andMe, but the results from FinnGen 
were not significant. Measles virus infection may induce 
human immune suppression, such as lymphocyte deple-
tion and peripheral lymphocyte silence [38], which could 
result in the body’s inability to mount effective anti-
tumor immune responses. Additionally, the poliovirus 
receptor-like 4 (PVRL4), which is a receptor for measles 
virus, is significantly upregulated in colorectal cancer 
[39], providing some suggestive associations. How-
ever, observational studies supporting this are currently 
lacking.

For herpes zoster, presence of SNPs linked to increased 
susceptibility to VZV infection increased the risk of rec-
tal cancer (OR = 1.26, P = 0.01). However, presence of 
SNPs linked to increased susceptibility to VZV decreased 
the risk of colon cancer (OR = 0.97, P = 0.80). Although 
this difference is not statistically significant, the oppos-
ing trend suggests that intestinal site heterogeneity may 
influence the direction of VZV’s effect on outcomes. 
VZV replicates readily in CD8 cells and triggers inflam-
mation [40]. Observational studies has reported that 
high levels of CD8 cells reduce the risk of colon can-
cer (OR = 0.42, P = 0.012), but increase the risk of rectal 
cancer (OR = 1.13, P = 0.753) [41]. Therefore, the infec-
tive properties of VZV on colorectal cancer may be 
influenced by the immune infiltration characteristics of 
sub-site anatomy. Additionally, VZV may increase can-
cer risk, but lacks specificity for anatomical sites [42]. 
Therefore, our study suggests a sub-site-specific effect of 
VZV on cancer risk. Subsequent research is also needed 
to explore the exact mechanisms. Additionally, we found 
in the FinnGen cohort that presence of SNPs linked to 
increased susceptibility to mumps may increase the risk 
of rectal cancer, albeit with a weak statistical effect, and 
this causal effect was not validated in the 23andMe data-
set. This effect is consistent in CRC and colon cancer. 

This indicates that the association between mumps and 
rectal cancer risk warrants further investigation.

In infectious mononucleosis, EBV infection simulta-
neously reduces the risk of both colon and rectal can-
cer. Large-scale cohort studies have shown that EBV 
reduces the standardized incidence rate of rectal cancer 
(SIR = 0.90, 95% CI: 0.65–1.22) [43]. Similar to a study 
conducted in Germany, these studies all indicate that 
EBV increases the risk of hematological malignancies, 
while EBV infection appears to reduce the risk of diges-
tive system tumors [43, 44]. Although these findings may 
not be statistically significant, these large-scale studies 
consistently demonstrate the same trend. Collectively, 
these studies suggest that EBV infection may reduce the 
risk of colon or rectal cancer.

Finally, we identified several blood metabolites associ-
ated with the risk of viral infections and colorectal can-
cer. Similar studies support our findings. We found that 
the Cysteinylglycine to taurine ratio reduced the risk of 
viral infections and rectal cancer. Cysteine plays a cru-
cial role in cellular redox regulation. Miranti et al. dem-
onstrated that cysteine reduces the risk of esophageal 
cancer [45], and can serve as a target against SARS infec-
tion [46]. Cortisone has anti-inflammatory properties, 
reducing the risk of viral infection and cancer [47, 48]. 
Phenylpyruvate is a metabolic product of phenylalanine 
and may play a role in inducing apoptosis in cancer [49]. 
Additionally, phenylpyruvate may inhibit viral replication 
by suppressing viral protease activity [50]. Although spe-
cific mediating mechanisms have not yet been identified, 
these findings suggest that exploring factors that may 
increase the risk of persistent chronic infection and can-
cer progression will be beneficial for disease control.

Our study has several strengths. Firstly, it encompasses 
a large number of virus GWAS and, for the first time, 
explores the causal association between viral infections 
and CRC. Secondly, we aggregated the latest GWAS data 
from the FinnGen r10 release, which has a larger sample 
size. Thirdly, our study is limited to European popula-
tions, thus avoiding ethnic bias. However, there are still 
limitations to the current study. Firstly, the applicability 
of the results requires validation through extensive pro-
spective studies. Secondly, despite the use of MR-Egger 
and MR-PRESSO, it is still not possible to completely 
avoid some potential pleiotropy, which is a common limi-
tation of GWAS studies. Lastly, although we stratified by 
anatomical site, the current study was unable to stratify 
by some common characteristics such as gender and age. 
In addition, the current study provides an association 
between susceptibility to viral infection and colorectal 
cancer risk. More in-depth research is needed to explore 
the direct risk association between viral infections and 
colorectal cancer.
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Conclusion
Our study investigated the genetic susceptibility asso-
ciation between viral infections and CRC risk. We found 
that presence of SNPs linked to increased susceptibility to 
HSV may reduce the risk of CRC, while presence of SNPs 
linked to increased susceptibility to VZV increases the 
risk of rectal cancer. In sub-site stratification, presence of 
SNPs linked to increased susceptibility to viral hepatitis 
and EBV infection were associated with a decreased risk 
of colon cancer, while measles virus increased the risk of 
colon cancer. Additionally, presence of SNPs linked to 
increased susceptibility to EBV infection was found to 
decrease the risk of rectal cancer.
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