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Abstract 

Background Adult T‑cell Lymphoma/Leukemia (ATLL) is characterized by the malignant proliferation of T‑cells in 
Human T‑Lymphotropic Virus Type 1 and a high mortality rate. Considering the emerging roles of microRNAs (miR‑
NAs) in various malignancies, the analysis of high‑throughput miRNA data employing computational algorithms helps 
to identify potential biomarkers.

Methods Weighted gene co‑expression network analysis was utilized to analyze miRNA microarray data from ATLL 
and healthy uninfected samples. To identify miRNAs involved in the progression of ATLL, module preservation analysis 
was used. Subsequently, based on the target genes of the identified miRNAs, the STRING database was employed to 
construct protein–protein interaction networks (PPIN). Real‑time quantitative PCR was also performed to validate the 
expression of identified hub genes in the PPIN network.

Results After constructing co‑expression modules and then performing module preservation analysis, four out of 15 
modules were determined as ATLL‑specific modules. Next, the hub miRNA including hsa‑miR‑18a‑3p, has‑miR‑187‑5p, 
hsa‑miR‑196a‑3p, and hsa‑miR‑346 were found as hub miRNAs. The protein–protein interaction networks were 
constructed for the target genes of each hub miRNA and hub genes were identified. Among them, UBB, RPS15A, and 
KMT2D were validated by Reverse‑transcriptase PCR in ATLL patients.

Conclusion The results of the network analysis of miRNAs and their target genes revealed the major players in the 
pathogenesis of ATLL. Further studies are required to confirm the role of these molecular factors and to discover their 
potential benefits as treatment targets and diagnostic biomarkers.
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Background
Adult T-cell lymphoma/leukemia (ATLL) affects the 
mature  CD4 and  CD25 lymphocyte lineage and has one 
of the poorest prognosis among hematologic malignan-
cies [1]. The incidence of ATLL in the United States is 
about five individuals out of one million; however, it 
varies in diverse regions, with the incidence increasing 
up to about 27 in 100,000 in endemic zones [2]. Accord-
ing to the Shimoyama criteria, ATLL is divided into 
acute, chronic, lymphomatous, and smoldering sub-
types [3]. The disease primarily occurs in the fifth and 
sixth decades of life [4] with poor response to conven-
tional treatments [5]. Acute and lymphomatous types 
can shorten median survival to 6.2 and 10.2  months, 
respectively [4].

Human T-lymphotropic virus type 1 (HTLV-1) is a ret-
rovirus and the causative agent of ATLL and a progressive 
chronic neurologic disorder, HTLV-1-associated mye-
lopathy/tropical spastic paraparesis (HAM/TSP), which 
results in progressive weakness of the lower extremities 
and significant morbidity [6–8]. There is a 4–7% risk of 
developing ATLL in HTLV-1-infected individuals [9]. 
Its genome contains tax and Hbz, two regulatory genes 
[10, 11]. Hbz is encoded from the antisense strand of the 
genome [12]. Tax and Hbz play key roles in the formation 
of persistent infection and initiation of T cell oncogen-
esis. Tax interacts with several genes and signaling path-
ways of an infected host like nuclear factor-kB (NF-κB) 
pathway, Rat sarcoma virus (RAS) signaling pathway, and 
the mammalian target of rapamycin (mTOR) pathway 
[11]. Despite a large number of studies and promising 
discoveries on the topic, the exact molecular mechanisms 
responsible for HTLV-1-related tumorigenesis are not 
well known [13]. Yet, there are several studies searching 
for anomalies in the area of epigenetics [14–16]. Micro-
RNAs (miRNAs) belong to a wide group of non-coding 
RNAs that mainly govern gene expression [17]. These 
small single-stranded RNAs also regulate a broad spec-
trum of biological processes through mRNA silencing 
and degradation [18]. The upregulation of miRNAs in 
cancer cells may lead to carcinogenesis by interdicting 
tumor suppressor genes. These miRNAs are known as 
oncogenic miRNAs (oncomiRs) [19]. On the other hand, 
there are miRNAs with tumor suppressor function that 
can result in the prevention of cancer progression by 
interfering with the expression of proto-oncogenes [20]. 
These miRNAs are identified as tumor suppressor miR-
NAs [21]. So far, miRNAs have been mentioned to be 
dysregulated in HTLV-1 infected cells, most likely influ-
encing important signaling pathways such as pathways in 
cancer, WNT signaling pathway, MAPK signaling path-
way, and other important pathways involved in carcino-
genesis [10].

Owing to the innovations in methods of extracting 
genome-wide assays for biological samples in recent 
years, it is now possible to investigate cellular physiol-
ogy and the pathophysiology of diseases in a systematic 
manner. One strategy in biological system analysis is to 
organize and study genes based on their interactions [22]. 
In this regard, several approaches may be utilized [23–
27]. This study used weighted gene co-expression net-
work analysis (WGCNA) for the purpose of classifying 
miRNAs into modules based on their correlations and 
then surveying the co-expressed miRNAs in each mod-
ule. It helps to find major miRNAs with high connectiv-
ity with others that probably have critical functions in the 
progression of the disease.

Considering ATLL’s rapid progression and the fact 
that it is refractory to conventional chemotherapy [28], 
there is a great need to have a better understanding of 
the pathogenesis by finding factors that have key roles in 
the development of the disease. The present study inves-
tigates the co-expressed dysregulated microRNAs (miR-
NAs) involved in the ATLL pathogenesis using weighted 
gene co-expression analysis. A number of target genes 
of the affected miRNAs are also studied to delineate and 
confirm the signaling pathways that may be implicated in 
the development and progression of ATLL.

Methods
Microarray dataset and data preprocessing
Under the accession number GSE31629 [29], microRNA 
expression dataset of 62 samples including 40 ATLL 
patients and 20 healthy individuals was retrieved from 
the gene expression omnibus (GEO) database [30]. The 
data derived from peripheral blood mononuclear cells 
(PBMCs) and CD4+ T cells were normalized with quan-
tile normalization. Missing values were handled using the 
"goodSamplesGenes" function from the WGCNA pack-
age, version 1.71 [31, 32]. Subsequently, sample clustering 
was used to identify outliers. The summary of the meth-
odology is presented in Fig. 1.

Construction of co‑expression network and module 
detection
The weighted co-expression network was constructed 
using the WGCNA package” version 1.71 in the R envi-
ronment [33]. To do so, an adjacency matrix was built 
using the following formula:

where β is the exponent and  Xi and  Xj are the expression 
values of miRNAi and miRNAj, respectively. The soft-
thresholding approach was applied to obtain a scale-free 
topology. Using the “picksoftthreshold” function of the 

aij = 0.5+ 0.5 ∗ cor Xi, Xj
β
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WGCNA package, β = 4 was determined to be the opti-
mal exponent value.

In the next step, the topological overlap meas-
ure (TOM) was determined as the measure of miR-
NAs connectivity in the network. Eventually, the 
co-expressed gene groups (modules) were detected by 
hierarchical clustering with parameters of minModule-
Size = 15, and a threshold of 0.25 was chosen to merge 
the close modules.

Identification of non‑preserved modules
The non-preserved modules of ATLL in the healthy sam-
ples were determined through module preservation anal-
ysis. For this purpose, the “modulePreservation” function 
[34] and permutation-based statistics were applied 
to measure medianRank and  Zsummary scores [35, 36]. 
 Zsummary is the average of Z-scores calculated for connec-
tivity and density measures [37]. Herein, a module with 
 Zsummary < 2 and medianRank > 12 was considered a non-
preserved module.

Finding hub miRNAs and their target genes
To find the hub miRNA in each non-specific mod-
ule, the function of “chooseTopHubInEachModule” in 
the WGCNA package was utilized. In order to find the 
experimentally validated genes for the mentioned hub 
miRNAs, the miRTarBase database was explored. miR-
TarBase is a collection of nearly 20 million experimen-
tally validated miRNA–target interactions (MTIs) among 
4630 miRNAs and 27,172 mRNAs [38].

Protein–protein interactions (PPIs) and enrichment 
analysis
The association between proteins was determined using 
the STRING database [39]. Due to the large size of 
PPINs, degree analysis was implemented to select genes 
with more connectivity which are also known as hub 
genes. The degree of a protein is its connection number 
to other proteins in the network. To survey the biologi-
cal process of the identified target genes, the Enrichr 
webtool was utilized [40].

Sample preparation
This study was conducted on 10 ATLL samples from 
patients who had been admitted to the Shariati Hos-
pital, Tehran, Iran, and 10 normal samples from blood 
donors who were referred to the Blood Transfusion 
Organization of Alborz. Peripheral blood mononucle-
olar cells (PBMCs) were isolated from EDTA-treated 
blood samples using a Ficoll-Paque density gradi-
ent (Cederline corporation, Canada). Total RNA was 
extracted from PBMCs with RNA Extraction RNJia 
Kit-ROJE Technology and the cDNA was synthesized 
using the RT-ROSET kit (ROJE, Iran). This study was 
approved by the Ethical Committee of Biomedical 
Research at Alborz University of Medical Sciences (IR.
ABZUMS.REC.1399.342).

Quantitative real‑time PCR
To confirm the HTLV-1 infection in the ATLL patients, 
the LTR and HBZ genes’ expressions were evaluated by 
PCR and subsequent agarose gel electrophoresis [41, 42]. 
Quantitative Real-Time PCR was performed on cDNAs 
utilizing specific primers and SYBR Green-based RT-
qPCR (TaKaRa, Otsu, Japan). To measure the expres-
sion rate of UBB, RPS15A, and KMT2D genes in ATLL 
and normal groups, the PCR was done on a Rotor-Gene 
Q-6000 machine (Qiagen, Germany) following the manu-
facturer’s instructions. According to five 5-point stand-
ard curves, that had been already prepared for target and 
reference genes, the gene expression of UBB, RPS15A, 
KMT2D, and RPLP0 (reference gene) were analyzed. The 
normalized gene expression was calculated as follows: 
Normalized index = copy number of the gene of interest/
copy number of the reference gene.

Statistical analysis
The Mann–Whitney U Test was used to compare gene 
expression levels between the normal and ATLL groups 
using GraphPad Prism software v8 (GraphPad Soft-
ware, Inc., San Diego, CA, USA). The data is displayed 
as mean ± standard error of the mean (SEM). The 

Fig. 1 The flowchart of the methodology
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results were considered statistically significant if the 
P-value < 0.05.

Results
Construction of weighted gene co‑expression network
To identify the co-expressed miRNAs, the calculation 
of adjacency and TOM matrices, construction of hier-
archical clustering, and finally merging of close clusters 
were performed. As a result, 15 modules were identified. 
Figure  2 displays the cluster dendrogram and modules 
before and after merging the clusters. Each unique color 
specifies an inimitable module. A list of co-expressed 
miRNAs in each module and their connectivity (degree) 
scores are mentioned in Additional file 1.

Determination of specific modules for the ATLL samples
To detect the specific non-preserved modules of ATLL 
samples, the medianRank and  Zsummary scores were cal-
culated for each module. The  Zsummary < 2 and medi-
anRank > 12 were considered as criteria to find the 
non-preserved modules. Among 15 identified modules, 
four modules including green, salmon, cyan, and brown 
modules were identified as specific modules for ATLL 
(Fig. 3).

Finding hub miRNA and their target genes
As the result, “chooseTopHubInEachModule” func-
tion identified hsa-miR-346, hsa-miR-187-5p, hsa-miR-
196a-3p, and hsa-miR-18a-3p as hubs in the green, 
salmon, cyan, and brown modules, respectively. Target 
genes of each miRNA were obtained from miRTarBase 
for further analysis. The target genes are mentioned in 
Additional file 2.

PPINs and enrichment analysis
The PPINs between the proteins were constructed by 
submitting the target genes of hub miRNAs belong-
ing to the specific modules in the STRING database 
(Fig.  4). Further network analysis revealed the degree 
of each protein. The protein with a higher degree is 
demonstrated as red. Based on this analysis, UBB and 
RPS2 (hsa-miR-18a-3p); RPL13A and RPS15A (hsa-
miR-196a-3p); BCL6, TERT, KMT2D (hsa-miR-346); 
CDKN1B and AGO2 (hsa-miR-187-5p) were identified 
as hub proteins (Table 1). Subsequently, biological pro-
cess enrichment was performed to find the function of 
each hub genes. The enrichment results are presented 
in Fig. 5.

Fig. 2 Dendrogram of clustered genes based on (1‑TOM). The colors reveal the cluster (module) membership acquired before and after merging 
the modules. A total of 14 modules were identified after merging
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Lower expression of UBB, RPS14A and KMT2D in ATLL 
patients compared to the normal control
The remarkable association between the highlighted 
miRNAs and pathways related to malignancies, immu-
nity, and viral infections led us to examine the gene 
expression of some of the hub genes that their dysregu-
lation in ATLL patients was never reported before. The 
results demonstrated significant downregulation of all 
three genes (P-value < 0.0001) in ATLL patients versus 
healthy controls (Fig. 6).

UBB’s expression rate in the ATLL group 
(0.4484 ± 0.06539) was lower than in the normal group 
(1.952 ± 0.1515) and the difference was statistically signif-
icant with P-value < 0.0001. A significantly lower expres-
sion of RPS14A in the ATLL patients (0.5884 ± 0.02465) 
compared to the normal group (3.260 ± 0.1204) was also 
observed (P-value < 0.0001). The expression of KMT2D in 
the ATLL cases was 0.5740 ± 0.05896 and in the normal 
control was 4.204 ± 0.1548, which shows a statistically 
significant lower expression in the ATLL patients than in 
the normal cases (P-value < 0.0001).

Discussion
Weighted gene co-expression analysis is a robust method 
for identifying expression patterns of diseases in a vari-
ety of tissues across different pathological states. It is 

reasonable to expect that the specific co-expression pat-
terns (or modules) for patient samples are likely associ-
ated with the underlying pathophysiological pathways 
and processes. As a corollary, module preservation analy-
sis can be utilized to identify condition-specific or non-
preserved modules.

In the present study, a number of hitherto unexplored 
miRNAs and genes were identified as possibly implicated 
in ATLL pathogenesis. All genes are miRNAs driver 
genes that have been found through exploring miRTar-
Base database. Module preservation analysis disclosed 
4 specific modules for ATLL. The hub miRNAs in these 
modules have a substantial correlation with numerous 
cancer pathways in an enrichment assessment of their 
target genes. Subsequent in vitro analysis of the identified 
miRNAs’ target genes demonstrated decreased expres-
sion of KMT2D and its potentially important role in 
ATLL pathogenesis.

It is believed that miR-346 may be involved in both 
inflammatory and metabolic processes [43]; however, 
additional research has shown that miR-346 may also 
have a role in the development of malignancies of the 
breast, cervix, and lung, as well as follicular thyroid, 
cutaneous squamous cell, and nasopharyngeal carcino-
mas [43–49]. The enrichment analysis of its target genes 
also indicated that miR-346 is deeply associated with 

Fig. 3 The medianRank (plot on the left) and  Zsummary (plot on the right) against module size specifies the non‑preserved modules  (Zsummary < 2 and 
medianRank > 12)
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pathways related to viral infections and malignancies; 
therefore, we further studied its target hub gene, KMT2D. 
Lysine Methyltransferase 2D, or KMT2D, is a member of 

a complex of proteins associated with Set1 (COMPASS), 
which enables gene transcription through H3K4 meth-
ylation [50]. KMT2D plays contradictory roles in dif-
ferent types of malignancies, some studies stated it has 
pro-tumorigenic functions [51], whereas others reported 
tumor-suppressive characteristics [50–53]. As a tumor 
suppressor gene, KMT2D is known to activate Bcl6 and 
Sirt1 in addition to Per2, resulting in inhibitory effects on 
Notch and K-Ras pathways [51]. It is good to notice that 
Bcl6 is also a miR-346 target hub gene. Loss of KMT2D 
was shown to assist cell growth related to EZH1/2 in pre-
tumorigenic EBV + B cell lymphoblastoid cells [54]. Our 
results show significant downregulation of KMT2D in 

Fig. 4 The protein–protein networks among the target genes of a hsa‑miR‑18a‑3p, b hsa‑miR‑196a‑3p, c hsa‑miR‑346 and d hsa‑miR‑187‑5p. The 
color and the size of nodes is related to their degree (red color and bigger size indicate higher values of degree)

Table 1 List of hub miRNAs and target genes involved in ATLL 
progression

Hub miRNAs Hub target genes

hsa‑miR‑18a‑3p UBB and RPS2

hsa‑miR‑196a‑3p RPL13A and RPS15A

hsa‑miR‑346 BCL6, TERT, KMT2D

hsa‑miR‑187‑5p CDKN1B and AGO2
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Fig. 5 Significant KEGG pathways enrichment results of A hsa‑miR‑18a‑3p, B hsa‑miR‑346, C hsa‑miR‑187‑5p and D hsa‑miR‑196‑3p target genes. 
All of the pathways are statically significant (P value < 0.05) and are sorted based on the combined scores provided by Enrichr

Fig. 6 Quantitative results of RT‑PCR show significant downregulation (P‑value < 0.0001) of A UBB, B RPS15A and C KMT2D
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ATLL patients versus healthy controls. Put it all together, 
these shreds of evidence are highly suggestive of its 
involvement in the pathogenesis of the disease, but con-
sidering its antithetical effects on cancers, more studies 
are needed to clarify the exact influence of KMT2D on 
ATLL.

In recent years miR-187 has attracted the attention of 
more researchers due to discoveries about its roles in 
various cancer types. miR-187 is likely to be involved in 
many cancer-related processes and characteristics such 
as sensitivity to drugs, proliferation, apoptosis, inva-
sion, and migration through its regulatory effects on its 
targets, namely FOXA2, CRMP1, MAD2L2, STOML2, 
BCL6, PTRF, CYP1B1, FGF9, MAPK12, MAPK7, Bcl-
2, IGF-1R [55]. Its dysregulation has been observed in 
many malignancies like osteosarcoma, male genitouri-
nary tumors, prostate cancer, bladder cancer, clear cell 
renal cell carcinoma, colorectal cancer, hepatocellular 
carcinoma, oral squamous cell carcinoma, cervical can-
cer, ovarian cancer, breast cancer, lymphoblastic leu-
kemia, and diffuse large b-cell lymphoma [55–73]. To 
our knowledge, the relationship between Adult T-Cell 
Leukemia/Lymphoma and miR-187 was never reported 
before. Our high-throughput analysis of miRNAs pro-
poses the involvement of miR-187 in the pathogenesis 
of ATLL. Considering the notable effects of miR-187 
on a high variety of malignancies, it seems necessary to 
investigate the miR-187 actions in ATLL patients.miR-
18a-3p was highlighted as a tumor-suppressive agent 
through its inhibitory effect on K-Ras [74]. It was also 
reported that miR-18a-3p has a regulatory effect on 
glycolysis/gluconeogenesis and focal adhesion in the 
uterus, lung, liver, and kidney malignancies [75]. There 
are studies presenting pieces of evidence that show 
miR-18a-3p is related to nasopharyngeal and hepato-
cellular carcinoma, breast cancer, and glioma [76–79]. 
Accordingly, to do an additional survey, Ubiquitin B 
(UBB) was selected as it was one of the hub genes in 
PPIN which is also known to play key roles in basic cel-
lular functions. UBB is one of four Ubiquitin encoding 
genes that is involved in the dysregulation of funda-
mental processes like cellular proliferation, apoptosis, 
and responses to DNA damage [80]. Several relation-
ships between Ubiquitin and various types of cancers 
have been reported such as gynecological cancer, hepa-
tocellular carcinoma, colorectal cancer, neuroblas-
toma, Esophageal Squamous Cell Carcinoma, Pediatric 
Medulloblastoma, seminoma, and lung cancer [80–82]. 
According to the downregulation of UBB in the RT-
PCR study, the possibility of its pathogenic actions in 
ATLL can be ruled out.miR-196a was shown to play 
roles in inflammation, embryonic development, and 
various cancers such as pancreatic adenocarcinoma, 

breast cancer, leukemia, esophageal adenocarcinoma, 
and colorectal cancer [83]. Ribosomal protein S15A 
(RPS15A) has been highlighted as a candidate partici-
pating in ATLL tumorigenesis. It belongs to the 40S 
subunit of ribosome [84]. RPS15A was reported to be 
potentially involved in hepatocellular carcinoma, pro-
gression of breast cancer, lung adenocarcinoma, pros-
tate cancer, glioblastoma, colorectal cancer, and acute 
myeloid leukemia as an oncogene [84–87]. RPS15A was 
also shown to be downregulated in ATLL patients in 
the PCR study, which rejects our hypothesis.

Our study have some limitations. We did not find a 
large miRNA dataset in databases. However, it is better 
that the mentioned analysis perform in a larger dataset 
if in it provides in future. The genes and also miRNAs 
should be validated in a large cohort.

Conclusion
The weighted miRNA-co-expression analysis, network 
analysis of the target genes, enrichment analysis, and 
comprehensive literature review highlighted hsa-miR-
18a, has-miR-187, hsa-miR-196a-3p, and hsa-miR-346 
as four new miRNAs that are strongly suspected to be 
involved in the pathogenesis of ATLL. Further investi-
gation is needed to assess the utility of these findings 
and their values as reliable biomarkers and/or therapeu-
tic targets. The expression levels of the three hub genes 
of the identified miRNAs target genes, namely, UBB, 
RPS15A, and KMT2D also imply the significant role of 
the miRNAs in maintaining the dysregulated pattern of 
gene expression in ATLL. Likely, the downregulation of 
KMT2D plays an important role in ATLL carcinogenesis, 
but its controversial effects on different cancer types pre-
clude a definite conclusion regarding its role.
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