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Abstract 

Background Patients with cancer are at high risk for severe courses of COVID‑19. Based on (pre‑)clinical data sug‑
gesting a potential protective effect due to the immunomodulating properties of azithromycin, we have initiated a 
prospective randomized trial.

Methods This randomized, single‑center, single‑blinded, placebo‑controlled phase 2 trial included adult patients 
with cancer undergoing systemic treatment. Patients were 1:1 randomized to oral azithromycin (1500 mg once 
weekly for 8 weeks) or placebo. The primary endpoint was the cumulative number of SARS‑CoV‑2 infections 12 weeks 
after treatment initiation.

Results In total, 523 patients were screened, 68 patients were randomized, and 63 patients received at least one 
dose of the study drug. Due to low acceptance and a lack of SARS‑CoV‑2 infections in the study cohort, the study was 
prematurely closed. With no reported grade III–IV possibly treatment‑related adverse events, azithromycin was gener‑
ally well tolerated. Overall survival (OS) rates after 12 months were 83.5% and 70.3% in the azithromycin and placebo 
group, respectively (p = 0.37). Non‑SARS‑CoV‑2 infections occurred in 4/32 (12.5%) in the azithromycin and 3/31 (9.7%) 
in the placebo group (p = 1). No emergence of azithromycin‑resistant S. aureus strains could be observed. According 
to treatment group, longitudinal alterations in systemic inflammatory parameters were detected for neutrophil/lym‑
phocyte and leukocyte/lymphocyte ratios.
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Conclusion Although efficacy could not be assessed due to premature closure and low incidence of SARS‑CoV‑2 
infections, azithromycin was associated with a favorable side effect profile in patients with cancer. As other prophylac‑
tic treatments are limited, SARS‑CoV‑2 vaccination remains a high priority in oncological patients.

ClinicalTrials.gov registration number and date (dd/mm/yyyy): NCT04369365, 30/04/2020.
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Background
The SARS-CoV-2 pandemic has been declared a global 
public health emergency by the World Health Organi-
zation. In several studies, a significantly higher risk for 
severe disease and death has been observed in patients 
with cancer, especially those receiving ongoing systemic 
therapy [1, 2]. In the pandemic, several mRNA or viral 
vector vaccines have been developed which confer pro-
tection from SARS-CoV-2 infection and severe COVID-
19 [3–5]. Although SARS-CoV-2 vaccination is generally 
recommended in patients with cancer, the efficacy of 
SARS-CoV-2 immunization was shown to be lower as 
compared to healthy individuals [6–11]. Therefore, fur-
ther prophylactic treatment modalities protecting par-
ticularly vulnerable populations may be needed. Since the 
global spread of SARS-CoV-2, several drugs have been 
studied, including the antiviral drugs remdesivir and 
ritonavir, the antimalarial drug hydroxychloroquine, or 
the steroid dexamethasone, with varying degrees of effi-
cacy [12–15]. Moreover, monoclonal antibodies includ-
ing bamlanivimab/etesevimab, casirivimab/imdevimab, 
sotrovimab, and tixagevimab/cilgavimab have been 
approved for use as pre- and post-exposure prophylaxis 
(PEP) in patients at high risk for clinical deterioration 
due to SARS-CoV-2 infection [16–18]. However, the evi-
dence for their use in patients with cancer is limited to 
retrospective analyses, and coverage of variants of con-
cern (VOC), including the Omicron VOC, may be lim-
ited [19–21].

Azithromycin is a macrolide antibiotic targeting gram-
positive, gram-negative, and atypical pathogens. Besides 
its antibacterial activity, immune-modulatory effects 
have been postulated, most probably due to a modulation 
of T cells, myeloid cells, and the release of inflammatory 
mediators such as interleukins (IL) 6/8 and tumor necro-
sis factor (TNF) alpha [22]. Thus, long-term azithromycin 
is increasingly and safely being used in other indications 
such as cystic fibrosis, bronchiolitis, and obstructive pul-
monary diseases such as asthma [22]. One study in lung 
allograft recipients showed that prophylactic treatment 
with azithromycin was associated with decreased replica-
tion of human rhinovirus and lower levels of inflamma-
tory cytokines [23]. Regarding SARS-CoV-2 infection, a 
small phase 2 trial evaluated a combination of hydroxy-
chloroquine with azithromycin, with no detectable viral 

load after 6 days in 100% of patients receiving the combi-
nation as compared to 57.1% in the hydroxychloroquine 
only group [24].

Based on these findings, we designed this randomized, 
single-blinded, placebo-controlled phase 2 trial imme-
diately at the beginning of the pandemic, when no vac-
cinations were yet available. The objective was to assess 
the efficacy and safety of oral azithromycin as a potential 
prophylactic treatment in patients with cancer receiving 
systemic antineoplastic therapy.

Materials and methods
Study design
The OnCoVID trial is a prospective, single-center, single-
blinded, placebo-controlled randomized phase 2 trial 
performed at the Division of Oncology of the Medical 
University of Vienna to assess the efficacy of prophylactic 
azithromycin treatment in patients with cancer under-
going antineoplastic treatment during the COVID-19 
pandemic. The full study protocol is given in Additional 
file 1.

In brief, eligible individuals were adult (≥ 18  years) 
patients with a histologically confirmed cancer diag-
nosis and a life expectancy of at least 3  months receiv-
ing systemic antineoplastic therapies regardless of the 
application route. Other inclusion criteria comprised 
an Eastern Cooperative Oncology Group (ECOG) per-
formance status < 3 and a negative SARS-CoV-2 PCR at 
study inclusion as measured by routine real-time PCR 
testing for viral RNA. Ongoing or newly started adjuvant, 
neoadjuvant or palliative systemic anticancer therapies 
with either cytotoxic agents, molecular targeted thera-
pies, monoclonal antibodies, checkpoint inhibitors, or 
combinations thereof were allowed. Exclusion criteria 
included the use of investigational agents within 28 days 
before study inclusion, patients with active opportunistic 
infections, ongoing radiotherapy, pregnancy or lactation, 
hypersensitivity to azithromycin or other macrolides, 
concurrent medication with ergotamine, theophylline, 
and digitalis, inadequate cardiac, hepatic, or renal func-
tion, a corrected QT interval (QTc) > 450 ms and the ina-
bility to swallow the study medication.

All study procedures were performed according to 
the Declaration of Helsinki with all applicable amend-
ments. The trial was approved by the local ethics 
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committee of the Medical University of Vienna (approval 
no. 1332/2020, 1164/2019) and was conducted accord-
ing to local and institutional regulations. Informed con-
sent was obtained from all participants before study 
inclusion. The trial is registered with clinicaltrials.gov 
(NCT04369365).

Randomization and study procedures
Patients were 1:1 randomized to azithromycin mono-
therapy versus placebo. Blinded azithromycin or pla-
cebo was given orally at a dose of 1500 mg once weekly 
(3 × 500 mg pills) for a maximum of 8 consecutive weeks 
unless no SARS-CoV-2 infection was documented by a 
positive SARS-CoV-2 rt-PCR. Treatment was applied as 
two treatment cycles with 28  days each, with days 1, 8, 
15, 22 constituting one treatment cycle. Randomization 
was performed with the Medical University of Vienna 
randomizer using block randomization stratified for sex 
and age (< 60 vs. ≥ 60 years).

Baseline assessments included documentation of 
the complete medical history including the oncologi-
cal medical record, the oncological treatment plan and 
concomitant medication, physical examination and 
ECOG assessment, electrocardiogram (ECG) includ-
ing QTc assessment, complete blood cell counts, rou-
tine serum biochemistry including procalcitonin and 
IL-6, and a pregnancy test in women with childbearing 
potential. Nasal swabs for the evaluation of resistant 
bacterial strains were obtained using Copan eSwab kits 
(Copan Diagnostics Inc., Murrieta, CA, USA) according 
to the manufacturer’s instructions. Regular study vis-
its were performed on day one of each treatment cycle 
and at the end of the observation period. They included 
assessing adverse events, concomitant medication, physi-
cal examination, laboratory tests performed at baseline, 
ECG, and nasal swabs as described above. Real-time PCR 
for SARS-CoV-2 RNA was performed routinely prior to 
application of each cycle of antineoplastic treatment at 
our institution.

Anti‑SARS‑CoV‑2 antibody testing in patient serum
Blood samples of the included patients who provided 
written consent for biobanking of biological mate-
rial were stored by the “MedUni Wien Biobank” facil-
ity according to Standard Operating Procedures in an 
ISO 9001:2015-certified environment [25]. Antibodies 
against the SARS-CoV-2 spike protein (anti-S) and the 
nucleocapsid (anti-NC) antibodies in patient serum were 
measured using Elecsys immunoassays (Roche Diagnos-
tics, Rotkreuz, Switzerland) by the Department of Labo-
ratory Medicine as published previously [6].

Outcomes and endpoints
The primary endpoint was defined as the cumulative 
number of SARS-CoV-2 infections (both symptomatic 
and asymptomatic) detected by routine SARS-CoV-2 
rt-PCR within 12  weeks after initiation of azithromycin 
or placebo. Secondary endpoints comprised the num-
ber of patients with severe COVID-19 (hospitalization 
of death) until 12  weeks after initiation of therapy, the 
severity of COVID-19 as classified in the WHO Blueprint 
for COVID-19 therapeutic trials [26], all-cause mortality, 
tolerance, and side effects related to azithromycin, rate of 
infections other than COVID-19 and the development of 
azithromycin-resistant bacterial strains. In exploratory 
post-hoc analyses, longitudinal alterations of systemic 
inflammatory parameters were evaluated.

Assessment of azithromycin‑resistant bacterial strains
ChromID Staphylococcus aureus (S. aureus) Elite agar 
(SAID, Biomérieux, Nürtingen, Germany), were used 
to cultivate samples from the nasal swabs and isolate S. 
aureus colonies. Columbia agar plates (+ 5% sheep blood, 
COS, Biomérieux) were used to grow overnight cultures 
of the reference strain and the clinical isolates for sub-
sequent antibiotic susceptibility testing. Cation adjusted 
Mueller–Hinton–Broth (CAMHB, Sigma-Aldrich, 
Taufkirchen, Germany), containing 17.5  g/L casein acid 
hydrolysate, 3 g/L beef extract, and 1.5 g/L starch served 
as liquid media for minimal inhibitory concentration 
(MIC) testing. Azithromycin was obtained from Pfizer as 
500 mg powder for infusion, then solved in 4.8 mL Aqua 
bidest., subsequently aliquoted in 0.5  mL and stored 
at −  80  °C until usage. The reference strain S. aureus 
ATCC-29213 from the American Type Culture Collec-
tion (ATCC) was used as comparator in the MIC testing 
(Azithromycin MIC range: 0.5–1 mg/L).

Swabs were processed within 5 days at room tempera-
ture (21 °C) or within 7 days stored in the fridge at 4 °C. 
Swabs were vortexed for 15  s, and 50  µL of the sample 
was dropped on the SAID plate. The sample was streaked 
out homogeneously on the plate with a sterile Q-tip to 
assure the best growing conditions for potential colo-
nies. The plates were incubated at 37 °C for 24 h. Up to 3 
pink colonies were isolated with a sterile Q-tip, put into a 
Cryo-tube with plastic beads, and stored at − 80 °C until 
used for MIC testing.

The reference strain S. aureus ATCC-29213 and clinical 
isolates of patients colonized with S. aureus throughout 
the whole study period were tested for their azithromycin 
susceptibility. Thus, for each bacterial strain, one plastic 
bead of the Cryo-tubes was placed on COS plates, a dilu-
tion streak was done, and they were incubated overnight 
at 37 °C. Colonies from the overnight culture were used 
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to set a McFarland of 0.5 (~ 1.5 ×  108 cells) to inoculate 
96-well plates with prior prepared azithromycin concen-
trations ranging from 32 to 0.06  mg/L in two-fold dilu-
tion steps.

The determination of the MIC for S. aureus ATCC-
29213 and the clinical isolates was done in triplicates and 
according to the performance standards for antimicro-
bial susceptibility testing of the Clinical and Laboratory 
Standards Institute (CLSI) (National Committee for Clin-
ical Laboratory Standards) in pure CAMHB.

Statistical analysis
Initially, this study was designed as a phase 2 trial assum-
ing infection rates of ~ 50% and an effect size of 15–20% 
difference in infection rates between groups, translat-
ing to a sample size of 200 patients to achieve a power 
of 56–81%. A predefined interim analysis was initially 
planned after 200 follow-up tests; however, closure of the 
trial due to futility was deemed possible in case of very 
low infection rates.

The intention to treat (ITT) population comprised all 
randomized patients. Subjects were analyzed according 
to their assigned treatment. Here, a modified ITT (mITT) 
set was defined where all patients who received at least 
one dose of the study drug were included. The per-pro-
tocol (PP) population included all patients who received 
the study drug without major protocol violations.

Analysis of the primary endpoint was performed by 
comparing the difference in SARS-CoV-2 infection rates 
between groups and by comparing time-to-event data 
using Kaplan–Meier plots and log-rank tests. Analysis of 
secondary endpoints are considered exploratory; there-
fore, no correction for multiple testing was applied [27]. 
Independence of categorical variables was tested using 
Chi-square or Fisher’s exact test as appropriate. Gener-
alized linear mixed-effects models with normal distribu-
tion and log link were fitted to examine associations of 
oral azithromycin treatment with repeatedly assessed 
immunological marker levels. Random intercepts for par-
ticipants and random slopes across visits with a heteroge-
neous unstructured covariance structure were allowed to 
account for individual variation in immunological mark-
ers. Effect modification was investigated by including an 
interaction term between the treatment indicator and 
the visit variables. All statistical analyses were conducted 
with R (version 4.1), and the significance level was set at a 
two-sided p-value of < 0.05.

Results
Patient characteristics
Between April 27th, 2020 and April 30th, 2021, 523 
patients undergoing antineoplastic treatment were 
screened, 74 were included, and 68 patients were 

randomized (CONSORT diagram in Fig. 1). Of those, 5 
patients withdrew their consent before the first intake 
of the study medication. Consequently, 32 patients in 
the azithromycin and 31 in the placebo group received 
at least one dose of the medication (mITT population). 
The full study schedule was followed by 24 patients in 
the placebo and 25 patients in the azithromycin arms (PP 
population).

Median age was 59 years (range: 19–80) in the azithro-
mycin and 62 years (range: 30–82) in the placebo group 
in the mITT population (p = 0.382, Mann–Whitney-U 
test). The most frequent tumor entities were colorectal 
cancer (7/32, 21.9%) in the azithromycin as well as lung 
cancer (6/31, 19.4%) and breast cancer (6/31, 19.4%) in 
the placebo group. In both treatment arms, most patients 
received chemotherapy as ongoing antineoplastic treat-
ment. Further baseline characteristics are given in 
Table 1.

Clinical study endpoints
Due to the low acceptance of the study and as no SARS-
CoV-2 infections could be observed in the mITT and PP 
populations as detected by routine SARS-CoV-2 rt-PCR, 
the study was closed in April 2021. To assess undetected 
SARS-CoV-2 infections, we performed measurements of 
anti-SARS-CoV-2 nucleocapsid (anti-NC) and anti-spike 
(anti-S) antibody levels. In one patient, low levels of anti-
NC antibodies could be measured at the end of the study; 
however, this individual was weekly tested negative by rt-
PCR of respiratory specimen and showed no symptoms 
within the study period, suggesting a false positive anti-
NC result in the absence of anti-S antibodies.

Azithromycin treatment was generally well-tolerated, 
as no grade III–IV possibly treatment-related adverse 
events were documented (Table 2). The most frequently 
reported adverse events (AEs) in the mITT population 
were diarrhea in 6/32 (18.8%) and abdominal cramps in 
2/32 (6.3%) patients receiving azithromycin. Notably, one 
patient stopped intake of azithromycin due to diarrhea 
and abdominal cramps. In the placebo group, hyperten-
sion after intake of the study drug was documented in 
2/31 (6.5%) patients, and syncope was observed in 1/31 
(3.2%) patients. Clinically unsignificant QTc prolonga-
tion (grade I/II) was found in 7/32 (21.9%) patients in the 
azithromycin and 7/31 (22.6%) patients in the placebo 
group (p = 0.946, Chi-square test).

All-cause mortality was comparable in both treat-
ment arms (Fig. 2). Median overall survival (OS) was not 
reached. OS rates after 6  months were 93.4% (95%CI: 
85.0–100%) and 96.7% (95%CI: 90.5–100%), while OS 
rates after 12 months reached 83.5% (95%CI: 69.7–100%) 
and 70.3% (95%CI: 54.9–90.0%) in the azithromycin and 
placebo groups, respectively (p = 0.37, log-rank test).
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Other infections than SARS-CoV-2 were observed in 
4/32 (12.5%) patients in the azithromycin and 3/31 (9.7%) 
patients in the placebo group, respectively (p = 1, Fisher’s 
exact test). These included venous catheter-associated 
infections (n = 2), urinary tract infections (n = 2), and 
febrile neutropenia, vaginal candidiasis, and positive 
blood cultures with unknown septic focus in one patient, 
each.

Development of azithromycin‑resistant Staphylococcus 
aureus strains
From 81 swabbed patients, 26 had at least at one visit 
a detected S. aureus colonization. This corresponds 
to ~ 32% and thus complies with the assumed S. aureus 
nasal colonization in humans [28].

For azithromycin susceptibility testing, only swabs 
from 9 patients were eligible, as they showed a S. aureus 
colonization at all study visits. Of these 9 patients, 5 were 
in the placebo group, and 4 were in the azithromycin 

group. Azithromycin-resistant S. aureus isolates were 
found in 4/9 (44.4%) patients and showed a MIC of over 
32 mg/L during all visits. The resistant S. aureus isolates 
were isolated from one patient allocated to the placebo 
group and from 4 patients allocated to the azithromycin 
group. Clinical isolates from the 9 patients were either 
susceptible (0.5–1  mg/L) throughout the whole study 
period or were resistant from the beginning (> 32 mg/L). 
No emergence of resistance could be detected, neither 
in the placebo group nor in the azithromycin group. The 
individual MIC results are shown in Additional file  2: 
Table S1.

Variations of systemic inflammatory markers over time 
according to treatment
In an exploratory post-hoc analysis, general linear mixed-
effect models were fitted to assess whether systemic 
inflammatory markers were affected by azithromycin 
versus placebo treatment. The interaction term between 

Fig. 1 CONSORT diagram of the OnCoVID trial
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treatment (azithromycin vs. placebo) and a visit was used 
to evaluate treatment-associated variations over time.

Significant associations were observed regarding the 
neutrophil/lymphocyte ratio (NLR; likelihood ratio test 
(LRT) for interaction terms: p = 0.008), with increas-
ing NLR in the azithromycin and decreasing NLR in the 
placebo group (Fig.  3A). Similar results were seen for 
the leukocyte/lymphocyte ratio (LLR; LRT: p = 0.004, 
Fig.  3B). However, no significant alterations over time 

could be observed with regards to the platelet/lympho-
cyte ratio (PLR, Fig. 3C), the monocyte/lymphocyte ratio 
(MLR, Fig. 3D), C-reactive protein (CRP) levels (Fig. 3E), 
CRP/albumin ratio (Fig.  3F) as well as procalcitonin 
(PCT, Fig.  3G) and interleukin-6 (IL-6, Fig.  3H) levels. 

Table 1 Baseline characteristics in the modified intention to treat (mITT) population

Azithromycin (n = 32) Placebo (n = 31)

Age at inclusion (median, range) 59 (19–80) 62 (30–82) p = 0.382

Gender

Male 20 (62.5%) 19 (61.3%) p = 1.000

Female 12 (37.5%) 12 (38.7%)

ECOG at randomization

0 31 (96.9%) 28 (90.3%) p = 0.355

1 1 (3.1%) 3 (9.7%)

Tumor entity

Colorectal cancer 7 (21.9%) 2 (6.5%) p = 0.266

Lung cancer 6 (18.8%) 6 (19.4%)

Pancreatic cancer 5 (15.6%) 5 (16.1%)

Sarcoma 5 (15.6%) 2 (6.5%)

Extranodal lymphoma 2 (6.3%) 2 (6.5%)

Gastric cancer 1 (3.1%) 2 (6.5%)

Cholangiocellular carcinoma 1 (3.1%) 1 (3.2%)

Breast cancer 1 (3.1%) 6 (19.4%)

Neuroendocrine carcinoma 0 (0.0%) 3 (9.7%)

Other 4 (12.5%) 2 (6.5%)

Ongoing treatment

Chemotherapy 17 (53.1%) 17 (54.8%) p = 0.539

Targeted therapy 2 (6.3%) 1 (3.2%)

Immune checkpoint inhibition (ICI) 4 (12.5%) 3 (9.7%)

Chemotherapy + targeted therapy 9 (28.1%) 7 (22.6%)

Chemotherapy + ICI 0 (0.0%) 3 (9.7%)

Table 2 Possibly treatment‑related adverse events in the mITT 
population according to CTCAE v5

Azithromycin 
(n = 32)

Placebo (n = 31)

Diarrhea (grade I–II) 6 (18.8%) –

Abdominal cramps (grade I–II) 2 (6.3%) –

Nausea (grade I–II) 1 (3.1%) –

Fever (grade I–II) 1 (3.1%) –

Dysgeusia (grade I–II) 1 (3.1%) –

Syncope (grade III) – 1 (3.2%)

Hypertension (grade I–II) – 2 (6.5%)

QTc prolongation (grade I–II) 7 (21.9%) 7 (22.6%)

Fig. 2 Overall survival of the mITT population in the azithromycin 
and placebo groups
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Descriptive statistics and details on fitted models are 
given in Additional file 2: Tables S2–S10.

Discussion
To assess the prophylactic efficacy of azithromycin in 
patients with cancer, we performed this randomized, 
single-center, single-blinded, placebo-controlled phase 
2 trial. Although the trial was designed and performed 
immediately at the beginning of the pandemic when no 
vaccines were available, the acceptance was low, with only 
73/524 patients screened meeting the inclusion criteria 
and giving informed consent and 69 being randomized. 
In addition to the lower than expected recruitment, the 
primary endpoint could not be evaluated as there were 
no observed SARS-CoV-2 infections in the study cohort. 
Indeed, rigorous institutional policies and regular test-
ing in patients and caregivers resulted in a lower rate of 
detectable SARS-CoV-2 infections at our department as 
compared to a control cohort without cancer in our hos-
pital [29]. Consequently, pre-vaccination seroprevalence 
was low in patients and health care workers [30]. With 
the approval of SARS-CoV-2 vaccinations, patients with 
cancer were prioritized in vaccination campaigns due to 
their higher risk of contracting complications [31].

Given that antibody levels were lower in cancer 
patients than healthy controls, further measures may be 
needed to ensure maximum protection of patients with 
cancer and warrant the safety of continuing anticancer 

treatments during the pandemic [6–11]. In this regard, 
monoclonal antibodies inhibiting the binding of SARS-
CoV-2 to human cells have been approved as pre- and 
post-exposure prophylaxis. However, future VOCs may 
further reduce the efficacy of the available monoclonal 
antibodies, underlining the need for additional prophy-
lactic and therapeutic approaches in particularly vulner-
able individuals.

Since the outbreak of the COVID-19 pandemic, a 
still growing number of studies assessing the efficacy 
and safety of repurposed drugs as prophylactic medica-
tion has been conducted. Hydroxychloroquine has been 
shown to decrease the viral load and persistence in an 
open-label non-randomized trial, especially if co-admin-
istered with azithromycin [24]. However, these results 
were intensively debated due to methodical shortcomings 
[32, 33], and other studies examining hydroxychloroquine 
only or in combination with other drugs were closed due 
to a lack of efficacy in interim analyses [34, 35]. The large, 
randomized PRINCIPLE trial compared azithromy-
cin monotherapy with usual care ± other interventions 
in patients at high risk of an adverse clinical course of 
COVID-19. However, no significant differences in time 
to recovery and hospitalization rate between groups 
could be observed [36]. Patients receiving chemotherapy 
were included; however, specific subgroup analyses for 
patients with a compromised immune system were not 
reported. The CCC19 cohort study examined prognostic 

Fig. 3 A Neutrophil/lymphocyte ratio, B leukocyte/lymphocyte ratio, C platelet/lymphocyte ratio, D monocyte/lymphocyte ratio, E C‑reactive 
protein (CRP), F CRP/albumin ratio, G procalcitonin, and H interleukin‑6 in the azithromycin and placebo groups at visit 1, 2, and end of study (EoS). 
p‑values as determined by likelihood ratio test (LRT) for the interaction term between treatment group and visit
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factors of patients with cancer afflicted from COVID-
19 [37]. Interestingly, treatment with azithromycin and 
chloroquine was associated with increased 30-day all-
cause mortality compared to those who received nei-
ther. In contrast, there was no significant difference in 
all-cause mortality for patients receiving azithromycin 
alone, although potential confounding for other indica-
tions could not be excluded. Overall, these data suggest 
a limited efficacy of azithromycin treatment to reduce the 
risk of severe COVID-19. In line, current guidelines do 
not recommend the use of azithromycin with or without 
hydroxychloroquine in COVID-19 in the absence of bac-
terial infections [21].

The safety of azithromycin in our trial was comparable 
to a previous study of prophylactic azithromycin treat-
ment, where a serious adverse event was observed in 
only one out of 500 patients [36]. Data on tolerability of 
azithromycin in long-term regimens mainly stem from 
children with cystic fibrosis and bronchiectasis, confirm-
ing the excellent tolerability [38, 39]. Further supporting 
the favorable safety profile also for long-term adminis-
tration in patients with cancer, only one grade 3 adverse 
event was documented in the MALT-A trial where 
azithromycin was applied once weekly for up to 6 months 
in patients with mucosa-associated lymphatic tissue 
(MALT) lymphoma [40]. Here, adverse events included 
mainly gastrointestinal symptoms such as nausea, diar-
rhea or abdominal pain. Moreover, serum and intracellu-
lar levels of azithromycin were observed to be relatively 
stable over time in once-weekly regimens, providing the 
pharmacokinetic basis for further long-term studies of 
azithromycin [41].

Among these lines, we could not observe the emer-
gence of azithromycin-resistant bacterial strains. Yet, 
antibiotic resistance remains an issue, especially in the 
case of prophylactic administration. Indeed, although 
mass administration of azithromycin in children in sub-
Saharan Africa has been shown to reduce mortality, a 
significantly higher prevalence of resistance gene deter-
minants has been observed compared to children receiv-
ing a placebo even for non-macrolide antibiotics [42]. 
This is particularly important in patients with cancer due 
to their higher rates of resistance towards antibacterial, 
antifungal, and antiviral drugs and higher susceptibility 
for infections in general [43].

In our cohort, we could detect longitudinal alterations 
in systemic inflammatory parameters such as NLR and 
LLR according to the treatment group. Indeed, mac-
rolides such as azithromycin display immune-modula-
tory properties such as a decreased release of cytokines 
and direct modulation of T cell and myeloid cell activ-
ity [22], potentially impacting systemic inflammation 

in patients with cancer. Macrolides are used in MALT 
lymphomas, where clinical and molecular evidence sup-
ports a direct antitumoral and immunomodulatory role 
besides the antibacterial activity against infectious agents 
such as Helicobacter pylori [44]. However, longitudinal 
changes of systemic inflammatory markers are influenced 
by a plethora of factors such as tumor progression, type 
of antitumoral treatment, and other inflammatory condi-
tions [45, 46].

Our study has limitations. Due to the low number 
of included patients and no observed SARS-CoV-2 
infections, the primary endpoint could not be evalu-
ated, and the study was prematurely closed. Moreo-
ver, we enrolled all-comers undergoing antineoplastic 
treatment for solid tumors, inherently leading to het-
erogeneous cohorts in terms of disease entities and 
systemic antitumoral therapies. Further exploratory 
subgroup analyses and correction for confounding fac-
tors were therefore not feasible due to a small number 
of participants.

In conclusion, although the side effect profile of 
azithromycin was favorable, the efficacy of azithro-
mycin in reducing SARS-CoV-2 infections and severe 
courses of COVID-19 could not be evaluated in our 
study. Given that other studies failed to show a benefit 
for azithromycin in COVID-19 and other prophylactic 
interventions remain scarce, SARS-CoV-2 vaccination 
remains pivotal to ensure the safety of vulnerable indi-
viduals such as patients with cancer.
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