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Abstract

There is growing evidence of the microbiome’s role in human health and disease since the human microbiome
project. The microbiome plays a vital role in influencing cancer risk and pathogenesis. Several studies indicate
microbial pathogens to account for over 15–20% of all cancers. Furthermore, the interaction of the microbiota,
especially the gut microbiota in influencing response to chemotherapy, immunotherapy, and radiotherapy remains
an area of active research. Certain microbial species have been linked to the improved clinical outcome when on
different cancer therapies. The recent discovery of the urinary microbiome has enabled the study to understand its
connection to genitourinary malignancies, especially prostate cancer. Prostate cancer is the second most common
cancer in males worldwide. Therefore research into understanding the factors and mechanisms associated with
prostate cancer etiology, pathogenesis, and disease progression is of utmost importance. In this review, we explore
the current literature concerning the link between the gut and urinary microbiome and prostate cancer risk and
pathogenesis.
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Introduction
The human microbiota plays a vital role in many life
processes, both in health and disease [1, 2]. The micro-
biota is defined as a group of microorganisms; bacteria,
viruses, fungi, and archaea living in a host, whereas the
microbiome is a collection of genes and genomes of the
microbiota and their environment [2]. The host and the
gut microbiome exist in a symbiotic equilibrium state
[3]. Microbial dysbiosis occurs when this state of equilib-
rium is distorted [4, 5] and can be caused by stressors
such as disease, age, diet, smoking, and many other en-
vironmental factors. Understanding the mechanisms of
this unique niche and balance is critical in understand-
ing the microbiome’s role in many disease processes,
including cancer pathogenesis [6, 7]. The mechanisms

by which the microbiota can alter cancer risk and pro-
gression are primarily attributed to immune system
modulation through mediators of chronic inflammation.
These can switch on oncogenic metabolites such as re-
active oxygen and nitrogen species that can lead to DNA
damage, triggering tumorigenesis [8].
Prostate cancer is the second most common cancer

among men worldwide. In 2018, the Global Cancer
Observatory (Globocan) report indicated 1,276,106 new
prostate cancer cases, with approximately 358,989 deaths
from the same disease [9]. The management of prostate
cancer has seen a lot of advancement from chemotherapy,
especially using androgen deprivation therapy, surgery for
low-grade tumors, hormonal therapy, and radiotherapy
[10]. However, there has remained a gap, especially in the
management of advanced prostate cancer, with many pa-
tients developing resistance to primary chemotherapeutic
agents, especially in castration-resistant prostate cancer
(CRPC) [11]. With the introduction of new treatment
options such as immunotherapy and the advancement in
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sequencing technologies, e.g., next-generation sequencing
(NGS) and metagenomics, there is hope that the micro-
biome, a critical factor in the regulation of immune system
could be a promising future therapeutic option in the
management of cancers including prostate cancer [12].
This is, however, still an active area of research with many
clinical trials underway. Therefore, it is essential to under-
stand the link between the microbiome and different can-
cers, including prostate cancer.
Several studies have indicated that the microbiota can

influence prostate tumorigenesis through direct or indir-
ect mechanisms [13, 14]. Under direct mechanisms, Pros-
tate cancer is associated with chronic inflammatory
urinary tract conditions such as: Chronic prostatitis and
Benign Prostatic Hypertrophy (BPH), among others [15].
Under indirect mechanisms, the gut microbiota is said to
influence metabolic processes and systemic inflammation
that tend to trigger prostate tumorigenesis. In this review,
we explore the current literature regarding microbiome ef-
fects on prostate cancer risk and pathogenesis.

Human microbiota and cancer
There is an established link between the microbiome
and cancer risk and pathogenesis [16, 17]. The human
microbiota found in many different organs comprises a
heterogeneous population of microorganisms, namely
bacteria, fungi, and viruses that maintain the host’s
homeostasis and are continually being exposed to vary-
ing stimuli throughout the lifespan of the host [18]. The
microbiota composition is dependent on genetic and en-
vironmental factors, including diet, geographic location,
toxin/carcinogen exposure, hormones, and antibiotics,

among other exposures [19, 20]. It is hypothesized that
the microbiota is a missing link in many cancer pathogene-
ses [21, 22]. The gut microbiota, the most diverse and
highly studied group, performs a multitude of functions, in-
cluding the metabolism of different dietary compounds,
protection against pathogenic bacteria colonization, and
maintaining the host inflammatory equilibrium, among
other functions [3]. The link between the gut microbiota
and cancer is bidirectional; cancer can alter microbiota’s
composition, whereas microbiota can affect the progression
or response of cancers [13]. There are several mechanisms
by which microbiota is believed to contribute to tumorigen-
esis. These include; genotypic integration, chronic inflam-
mation, genotoxicity, and immune modulation [23, 24].
Genomic integration is a virulence mechanism by

most oncogenic viruses. The virus inserts its DNA into
the host genome and hence partly controlling the host’s
cellular replication. The classic example is HPV (Human
papillomavirus) strains HPV 16 and HPV 18, which are
the leading cause of cervical cancer. HPV 16/18 insert
oncogenes E6 and E7 into the host genome, which silences
tumor suppressor genes p53 and pRB leading to the uncon-
trolled cellular replication hence carcinogenesis [25, 26].
Inflammation is a fundamental feature of carcinogenesis

irrespective of the etiological agent and is the primary
oncogenic mechanism underlying several well-defined,
causal, and microbial associations with cancer [24, 26].
Different microbial virulence factors can induce chronic
inflammation in the host tissue cells, triggering cellular
proliferation [27]. Uncontrolled cellular proliferation can
trigger apoptosis, which can result in tumorigenesis.
Chronic inflammation is hypothesized to be a trigger of

Fig. 1 Potential mechanisms of actions of how gut and genitourinary microbiome interacts with Prostate cancer
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prostate carcinogenesis, as evidenced by inflammatory
cells in the prostate microenvironment [28]. Prostatic in-
fections coupled with urinary tract infections provide a
crucial niche for repeated inflammatory exposure to the
prostate microenvironment leading to prostate cancer pre-
cursor lesions termed proliferative inflammatory atrophy
[15]. Proliferative inflammatory atrophy of the prostatic
epithelial cells is an intermediate phenotype prone to gen-
omic and epigenetic alterations leading to prostatic intrae-
pithelial neoplasia and prostate cancer [28]. However,
inflammation can also trigger oxidative stress through the
generation of reactive oxygen and nitrogen species that

induce mutagenesis leading to prostate carcinogenesis
[28]. Hence, current evidence suggests that inflammation
and atrophy are involved in prostate carcinogenesis. The
studies also continue to indicate that the microbiome
plays a role in establishing an inflammatory prostate
microenvironment that promotes prostate cancer develop-
ment and progression.
Genotoxicity is a process by which cellular DNA dam-

age happens through breaks, deletions, re-arrangements,
or insertions [29]. Genotoxicity can lead to cellular death
or lead to carcinogenesis by switching off tumor sup-
pressor genes (p53 and pRB) [30]. Cytolethal distending

Table 1 Summary of studies on the Microbiome and Prostate cancer

Study Samples Findings

Cohen R et al. 2005 [33] 34 Prostate tissues cultured from men after
undergoing radical prostatectomy

Propionibacterium acnes spp was the most predominant
bacteria and significant prostate tissue inflammation
was observed

Sfanos KS et al., 2008 [34] Prostatectomy tissues from 30 men with
Prostate cancer underwent 16S rDNA sequencing

83 distinct microorganisms spp. identified. There was no
significant association between the presence of particular
species of bacteria and histologic evidence of acute or
chronic inflammation.

Yow MA et al. 2017 [35] 16S rDNA sequencing on 20 snap-frozen
prostate tissue cores from ten “aggressive”
prostate cancer cases

Enterobacteriacae member species were found common
to all samples and P. acnes in 95% of analyzed samples.

Cavarretta I et al., 2017 [36] Performed 16S rDNA microbiome sequencing
of tumor, peri-tumor, and non-tumor tissues
upon radical prostatectomy.

Propionibacterium spp was the most predominant bacterial
genus found in all regions of the tumor. Staphylococcus spp
was the more abundant in tumor and peri-tumor areas as
compared to normal tissue areas.

Feng Y et al., 2019 [37] Metagenomics and meta-transcriptomic analysis
to identify microbiota in frozen radical prostate
specimens from tumor and adjacent benign
tissue from 65 Chinese patients

40 unique bacterial genera were identified. Pseudomonas,
Escherichia, Acinetobacter, and Propionibacterium spp were
the most abundant spp. respectively.

Banerjee S et al.,2019 [38] Microarray metagenomics analysis of formalin-fixed
tissue from 50 prostate cancer patients and 15
patients with BPH

The most predominant bacteria belonged to the following
phyla; Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes
respectively. Among the viruses isolated, 41% were known
tumorigenic viruses, including high-risk human papillomavirus
(HPV 16&18), and human cytomegalovirus (HCMV)

Miyake M et al., 2019 [39] 45 prostate cancer and 33 BPH tissue specimens
were screened for sexually transmitted infectious
agents using PCR

Mycoplasma genitalium was the only organism independently
associated with prostate cancer and with high Gleason scores

Shrestha E et al. 2018 [44] Assessed the urinary microbiome of 135 men
undergoing prostate needle biopsy

Corynebacterium, Staphylococcus, and Streptococcus species
were the most predominant in both positive and negative
biopsy cases. No species was significantly associated with
prostate cancer.

Yu H et al. 2015 [45] 16S rRNA sequencing done on urine, seminal
fluid, and expressed prostatic fluids (EPS) from
men with BPH and Prostate cancer

Bacteroidetes, Alphaproteobacteria, Firmicutes bacteria,
Lachnospiraceae, Propionicimonas, Sphingomonas spp. were
significantly associated with Prostate cancer

Alanee S et al. 2018 [46] Assessed the urinary and gut microbiota of
30 men undergoing trans-rectal prostate biopsy

A high abundance of Veillonella, Streptococcus, and Bacteroides
spp. was found in Prostate cancer patients. No spp. was
significantly associated with prostate cancer.

Liss MA et al. 2018 [57] Assessed gut microbiota among 133 men
undergoing trans-rectal prostate biopsy

There was significant differences in the microbial composition
of the cancer and non-cancerous patients and non-significantly
associated with Prostate cancer.

Golombos DM et al. 2018 [49] Evaluated the gut microbiome of 20 men
with BPH and prostate cancer

A high abundance of Bacteroides massiliensis in prostate cancer
cases compared to BPH cases was found

Sfanos KS et al. 2018 [34] Assessed microbiota of 30 healthy men and
30 men with localized, recurrent, and metastatic
prostate cancer using 16S rDNA sequencing

There was a greater alpha diversity in the normal men
compared to men with prostate cancer
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toxin (CDT) and colibactin are genotoxins produced by
microorganisms in the family Enterobacteriaceae, espe-
cially Escherichia coli. These induce double-strand DNA
breaks leading to carcinogenesis.
Studies have shown that the disruption of the gut

microbiome immune system cross-talk that maintains an
anti-cancer immune surveillance system can trigger
tumorigenesis [31, 32].
Therefore the current evidence indicates the micro-

biome is a potential therapeutic option in managing sev-
eral cancers, and several clinical trials are underway to
establish its clinical utility.

Microbiome in prostate tissue microenvironment
Several studies have demonstrated the existence of bac-
teria and viruses in normal and cancerous prostate tissues.
A study by Cohen R et al. 2005, examined 34 men who
had undergone radical prostatectomy and later culture,
and histological diagnosis was made on whole sections of
prostatic tissues. Propionibacterium acnes spp was the
most predominant bacteria found on culture with 35% fre-
quency, and its presence was significantly(p-value = 0.007)
associated with prostate tissue inflammation [33].
A similar study by Sfanos KS et al., 2008, carried out

16S rDNA gene sequencing of bacterial DNA from a
series of 170 prostatectomy tissue core samples from 30
cancer patients. Over 83 species of bacteria were found
in prostate cancer tissues. In this study, culturing the
Prostate, core tissues didn’t yield any bacterial species,
and this could be due to the presence of un-culturable
species. The study found no significant association be-
tween the presence of particular species of bacteria and
histologic evidence of acute or chronic inflammation [34].
More recently, Yow et al. 2017, performed 16S rDNA

next-generation sequencing and total RNA sequencing
on cancerous regions and matched benign tissue regions
from 20 aggressive prostate cancer patients. Upon 16S
rDNA sequencing, the study identified family Enterobac-
teriaceae, specifically the genus Escherichia and also
Propionibacterium acnes were found with the highest
relative abundance of 95%. RNA sequencing identified
endogenous retroviral sequences in both malignant and
benign tissue datasets, but no other known viral se-
quences were identified [35]. The study did not, how-
ever, have negative controls for DNA extraction and
sequencing pipelines.
Cavarretta et al., 2017 investigated microbial presence

in the tumor, peri-tumoral, and non-tumor areas of
prostate tissues using 16S rDNA sequencing directed to
the V3–V5 hypervariable regions. Propionibacterium spp
was the most predominant bacterial genus found in all
areas of the tumor. Beta diversity was not significantly
different between areas, but individual bacterial species
were significantly and differentially abundant in some

areas. Tumor and the peri-tumoral regions had a simi-
larly higher relative abundance of Staphylococcus spp
compared to normal areas. In contrast, the normal areas
had a higher abundance of Streptococcus spp than the
tumor and the peri-tumoral regions [36].
A study by Feng et al. 2019, used integrated metage-

nomics and metatranscriptomic analysis to identify
microbiota in frozen radical prostate specimens from
tumor and adjacent benign tissue from 65 Chinese pa-
tients. They identified over 40 unique bacterial genera
with Pseudomonas, Escherichia, Acinetobacter, and Pro-
pionibacterium spp being the most abundant. They did
not detect any viruses. The study found no difference
between tumors and benign tissue in terms of overall
(alpha) bacterial diversity or group (beta) diversity, re-
gardless of Gleason score [37].
Banerjee et al., in 2019, used microarray metagenomics

analysis of formalin-fixed tissue from 50 prostate cancer
patients and 15 patients with BPH and identified viral,
bacterial, and fungal DNA signatures. The most predom-
inant bacteria belonged to the following phyla; Proteo-
bacteria, Firmicutes, Actinobacteria, and Bacteroidetes in
order of reducing frequency. There were no differences
in the microbiota signatures of cancer and BPH prostate
tissues [38]. Among the viruses isolated, 41% are known
tumorigenic viruses, including high-risk human papilloma-
virus (HPV 16&18), and human cytomegalovirus (HCMV).
HPV18, Kaposi’s Sarcoma Herpesvirus (KSHV), and Polyo-
maviridae were found to be associated with lower Gleason
scores [38].
A similar study by Miyake et al., 2019 screened 45

prostate cancer and 33 BPH patient tissue specimens for
various sexually transmitted infectious agents using
PCR. Out of the seven organisms that were tested for,
namely; Neisseria gonorrhoeae, Chlamydia trachomatis,
Mycoplasma genitalium, Mycoplasma hyorhinis, Urea-
plasma urealyticum, HPV16, and HPV18, only Myco-
plasma genitalium was independently associated with
prostate cancer and with high Gleason scores [39]. The
findings from these studies indicate that prostate cancer-
ous tissue harbor different microbial species, which could
be linked to prostatic inflammation and carcinogenesis.

Urinary microbiome and prostate cancer
The discovery of a vast urinary microbiome’s immense
diversity has changed the previous dogma of urine being
sterile [40]. Previously, the microbiome’s detection in
urine by culture faced a significant challenge of contam-
ination by skin, prepuce, virginal, and rectal areas. Ad-
vancements have overcome this challenge in new, highly
sensitive detection methods such as 16S RNA and DNA
sequencing and shotgun metagenomics sequencing [41].
Prostate cancer has been associated with chronic urin-

ary tract infections such as chronic prostatitis/chronic
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pelvic pain syndrome (CP/CPPS). Therefore [42, 43], un-
derstanding the urinary microbiome is vital in connect-
ing dots in prostate cancer pathogenesis.
Similarly, several studies have explored the relationship

between the urinary microbiome and prostate cancer [42,
44, 45]. Shrestha et al. 2018, assessed the urinary micro-
biome of 135 men undergoing prostate biopsy. Corynebac-
terium, Staphylococcus, and Streptococcus species were the
most predominant in both positive and negative biopsy
cases. Several other species, such as; Streptococcus angino-
sus, Anaerococcus lactolyticus, Anaerococcus obesiensis,
Actinobaculum schaalii, Varibaculum cambriense and Pro-
pionimicrobium lymphophilum were more abundant in
positive biopsy patients than negative biopsy patients [44].
There was no single microbiota spp. that was found to be
significantly associated with prostate cancer. However, this
study did not provide information regarding whether they
did a digital rectal exam to ensure that the voided urine in-
cluded expressed prostatic secretions. The other limitation
of the study is that it never mentioned if the urine was a
midstream clean-catch sample as this ensures minimal ur-
ethral contamination.
Yu et al. 2015 assessed microbiota in urine, seminal

fluid, and expressed prostatic fluids (EPS) from men
with BPH and Prostate cancer. E. coli detection was sig-
nificantly higher in EPS and seminal fluid compared to
urine, while Enterococcus spp detection was more com-
mon in seminal fluid. Patients with prostate cancer had
significantly high Bacteroidetes, Alphaproteobacteria,
Firmicutes bacteria, Lachnospiraceae, Propionicimonas,
and Sphingomonas and Ochrobactrum, and a decrease in
Eubacterium and Defluviicoccus compared to the BPH
group [45]. This study examined the microbiota of a valu-
able EPS specimen, which could provide a less invasive
alternative for understanding the prostate microbiome.
In a study by Alanee et al. 2018, urinary microbiota of

30 men undergoing trans-rectal prostate biopsy with high
prostatic-specific antigen (PSA) levels were assessed.
Urine samples were obtained, followed by a prostatic mas-
sage. Patients with prostate cancer had a high abundance
of Veillonella, Streptococcus, and Bacteroides, and a low
abundance of Faecalibacterium, Lactobacilli, and Acineto-
bacter as compared to those with BPH [46]. However, this
study had a small sample size of 30 patients, which would
have reduced the study’s power.
From the findings of the different studies looking at the

Urinary microbiome, it remains essential to standardize the
procedures and techniques for urine sample collection. This
will provide a platform for comparable results [47]. We also
observe that chronic inflammation, coupled with prostatic
and or urinary tract infections, provides an inflammatory
microenvironment that stimulates the development of
prostate cancer precursor lesions that drive prostate
tumorigenesis [48].

The gut microbiota and prostate cancer
There is a paucity of knowledge on how the gut micro-
biome influences prostate cancer risk and pathogenesis
[49, 50]. Studies have explored the gut microbiome com-
position that regulates the metabolism of compounds as-
sociated with increased prostate cancer risk. Other
studies have, however, examined the microbiota com-
position in prostate cancer cases and their controls.
Studies have shown that a regular dietary composition

of dairy products, red meat, and high fat is associated
with increased prostate cancer risk [51, 52].
Antibiotics have been shown to induce gut microbial

dysbiosis, which can propagate translocation of patho-
genic bacteria, leading to chronic inflammation, an es-
sential inducer of tumorigenesis [53, 54]. A study by
Boursi et al. .2015 analyzed a retrospective dataset of 27,
212 cases and 105,940 controls. It was found that prostate
cancer risk increased modestly with the use of penicillin
and quinolones, sulphonamides, and tetracyclines [55]. A
study by Plottel et al., 2011 hypothesized that the estrobo-
lome (enteric genes that metabolize estrogen) is associated
with prostate cancer risk. Estrogen is said to activate poly-
cyclic hydrocarbons leading to the formation of carcino-
genic metabolites, e.g., radical cations that induce cellular
DNA damage leading to carcinogenesis [56].
Studies have also explored how specific gut microbiota

are associated with prostate cancer risk and outcomes.
Liss et al. 2018, assessed the gut microbiota among 133
men undergoing trans-rectal prostate biopsy. At the spe-
cies level, they found significant differences between can-
cer and non-cancer groups for some well-represented
members, including enriched Bacteroides and Streptococ-
cus spp in cancer compared with the non-cancer control
group. The study did not find any significant differences
in the microbial diversity between prostate cancer and
controls [57].
Golombos et al. 2018 evaluated the gut microbiome of

20 men with benign prostatic hypertrophy and prostate
cancer (localized/intermediate and high risk) undergoing
care at a tertiary health facility. Bacteroides massiliensis
was found to be in high relative abundance in prostate
cancer cases compared to controls. Feacalibactereium
prausnitzii and Eubactererium rectalie were in a higher
relative abundance among controls [49]. The study
found significant biological differences at gene level
pathways between cases and controls.
Alanee et al. 2018 in a prospective study, assessed the

gut microbiota of 30 men among men undergoing trans-
rectal prostate biopsy. Upon histological diagnosis, the
study observed an increased abundance of Bacteroides
spp among patients with prostate cancer than the con-
trols [46]. The study did not find a significant associ-
ation between microbiota clustering patterns and
Gleason scores of prostate cancer patients.
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A study by Sfanos et al. 2018, carried out a cross-
sectional study where they profiled the fecal microbiota
of 30 healthy male volunteers and men with different
clinical states of prostate cancer (i.e., localized, biochem-
ically recurrent, and metastatic disease) using 16S rDNA
amplicon sequencing. The study reported a greater alpha
diversity in those without prostate cancer than those
with prostate cancer [58]. The findings from different
studies indicate a plausible link between specific gut mi-
crobial species and prostate cancer risk and disease sta-
tus (Fig. 1).

Microbiota and prostate cancer treatment
There is growing evidence that gut microbiota modu-
lates response to different drugs, including chemothera-
peutic agents [59]. Alexander et al., 2017 proposed a
TIMER model (Translocation, Immunomodulation, Me-
tabolism, Enzymatic degradation, and reduced diversity).
The TIMER model expounds on the mechanisms for
how gut microbiota mechanistically influences chemo-
therapeutic agents [60].
Under microbial translocation, Viaud et al., 2013

found that cyclophosphamide caused the shortening gut
intestinal wall villi, allowing microbes to cross and enter
secondary lymphoid organs such as lymph nodes, tonsils,
and the spleen. They hypothesized that cyclophosphamide
stimulates anti-tumor immune responses of gut microbiota
from lymphoid organ infiltration. The study also found out
that a specific set of gram-positive bacteria (Lactobacillus
johnsonii, Lactobacillus murinus, and Enterococcus hirae)
were necessary to mediate cyclophosphamide-driven accu-
mulation of type 17 T helper (TH17) cell and type 1 T
helper (TH1) cell responses [61].
A study by Lida et al.,2013 found that intestinal micro-

biota in mice facilitated the immunomodulation of che-
motherapeutic drugs through the regulation of immune
cytokines and innate myeloid cell release and the intro-
duction of antibiotics further reduced the anti-tumor ef-
fect of the chemotherapeutic agents [62]. The findings
from these and several other studies have illustrated the
active role of the microbiota in immune modulation and
how this could influence the response and efficacy of dif-
ferent chemotherapeutic agents [59].
Different studies have indicated that bacteria in the

gastrointestinal tract regulate metabolic processes such
as reduction, hydrolysis, dihydroxylation, and dealkyla-
tion, which affects the efficacy of various chemothera-
peutic agents [60, 63]. For reduced diversity, Montassier
et al., 2015 found that fecal samples collected after
chemotherapy contained a decreased abundance of Fir-
micutes, Actinobacteria, and increases in Proteobacteria
than the patients’ samples before chemotherapy [64]. In
a similar study by Vande et al. 2013, Mycoplasma hyor-
hinis was found to metabolize the prostate cancer drug

Gemcitabine into an inactive metabolite, therefore de-
creasing the efficacy of the drug [65].
A study by Sfanos et al. 2018, hypothesized that taking

oral androgen deprivation therapies (ADT), including
bicalutamide, enzalutamide, and abiraterone acetate, was
associated with compositional differences in the gut
microbiota. The study reported a significant difference
in alpha diversity in gut microbiota among men with
prostate cancer versus those without a prostate cancer
diagnosis. There were significant compositional differ-
ences in the gut microbiota of men taking ADT, includ-
ing a greater abundance of species such as Akkermansia
muciniphila and Ruminococcaceae spp. Furthermore,
upon functional analysis, the study found an enriched
representation of bacterial gene pathways involved in
steroid hormone biosynthesis in the fecal microbiota of
men taking oral ADT. The findings from these studies,
therefore, creates a need for more research into under-
standing the clinical efficacy of the gut microbiota in
Prostate cancer clinical management [58] (Table 1).

Conclusion
There is a growing body of knowledge concerning the
relationship between the microbiome and prostate can-
cer. The current literature has shown that cancerous
prostate tissue contains bacterial DNA, unlike healthy
prostate tissue. Studies link urinary microbiome and
chronic inflammation to prostate cancer risk and disease
pathogenesis. Though not fully understood, studies indi-
cate that chronic systemic inflammation and the im-
mune system modulation are the mainstay mechanisms
by which the gut microbiome propagates prostate cancer
risk and pathogenesis. There is a lack of data on the role
of the microbiome on prostate cancer therapies; how-
ever, current evidence shows that chemotherapy reduces
gut microbiota diversity. Therefore there is a great need
for more prospective studies to understand the exact
mechanisms that elucidate the role of the microbiome in
prostate cancer pathogenesis.
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