RESEARCH ARTICLE

Open Access

Characterisation of microbial communities within aggressive prostate cancer tissues

Melissa A. Yow¹, Sepehr N. Tabrizi^{2,3,4}, Gianluca Severi⁹, Damien M. Bolton⁷, John Pedersen⁸, Australian Prostate Cancer BioResource¹⁰, Graham G. Giles^{5,6} and Melissa C. Southey^{1*}

Abstract

Background: An infectious aetiology for prostate cancer has been conjectured for decades but the evidence gained from questionnaire-based and sero-epidemiological studies is weak and inconsistent, and a causal association with any infectious agent is not established. We describe and evaluate the application of new technology to detect bacterial and viral agents in high-grade prostate cancer tissues. The potential of targeted 16S rRNA gene sequencing and total RNA sequencing was evaluated in terms of its utility to characterise microbial communities within high-grade prostate tumours.

Methods: Two different Massively Parallel Sequencing (MPS) approaches were applied. First, to capture and enrich for possible bacterial species, targeted-MPS of the V2-V3 hypervariable regions of the 16S rRNA gene was performed on DNA extracted from 20 snap-frozen prostate tissue cores from ten "aggressive" prostate cancer cases. Second, total RNA extracted from the same prostate tissue samples was also sequenced to capture the sequence profile of both bacterial and viral transcripts present.

Results: Overall, 16S rRNA sequencing identified *Enterobacteriaceae* species common to all samples and *P. acnes* in 95% of analyzed samples. Total RNA sequencing detected endogenous retroviruses providing proof of concept but there was no evidence of bacterial or viral transcripts suggesting active infection, although it does not rule out a previous 'hit and run' scenario.

Conclusions: As these new investigative methods and protocols become more refined, MPS approaches may be found to have significant utility in identifying potential pathogens involved in disease aetiology. Further studies, specifically designed to detect associations between the disease phenotype and aetiological agents, are required.

Keywords: Prostate cancer, Sexually transmitted infection, Infection, 16S rRNA, RNA, cDNA, Propionibacterium acnes

Background

First proposed in the early 1950s, an infectious aetiology for prostate cancer has since been widely investigated using conventional and serology-based case–control designs and some cohort studies but the evidence from these has been generally weak and inconsistent. A causal association is yet to be established.

Recent support for a role of infection in prostate cancer risk came from the detection of a novel candidate, *Propionibacterium acnes*, within prostate cancer tissues [1, 2]. There is also evidence of association between prostate cancer risk and gene variants of COX-2 [3], RNASEL [4] and TLR4 [5], identified in cases of hereditary

¹Genetic Epidemiology Laboratory, Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia 3010

prostate cancer, indicating that infection and the host response to infection may be involved in the development of prostate cancer.

Studies that have investigated the role of infectious agents in the aetiology of prostate cancer have adopted single organism targeted approaches or have identified microbial constituents based on amplification of various hypervariable regions of the 16S rRNA gene in concert with traditional cloning and sequencing methods [6–9]. Single organism targeted approaches are limited by their specificity while traditional broad-range 16S rRNA gene amplification, cloning and Sanger sequencing can be laborious and costly, depending on the scale of the study, number and complexity of samples. When compared with conventional sequencing methods, cyclic array-based massively parallel sequencing (MPS) methods, albeit with shorter read length capability and less

© The Author(s). 2017 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: msouthey@unimelb.edu.au

Full list of author information is available at the end of the article

accuracy in base calling, offer efficiencies in terms of cost, time and scalability.

The principal hypothesis that guided the direction of the work presented in this study was that persistent, rather than transient, infection of the prostate gland by a sexually transmitted or other infectious agent would be associated with risk. Thus, evidence of infection at the tissue level was sought by utilising two different molecular approaches, targeted partial 16S rRNA gene sequencing and total RNA sequencing using MPS. The overall objective of this study was to investigate the presence of infectious agent(s) in histopathologically determined aggressive prostate cancer cases (Gleason score ≥ 8).

Methods

Samples

Fresh-frozen scalpel-excised prostate tissue from males that had undergone radical prostatectomy with a Gleason score of ≥ 8 and tumour stage ranging from pT2c to pT3b (inclusive) were obtained from the Australian Prostate Cancer Bioresource [10] (n = 10). Tumour and benign tissues were provided for each case and the presence/absence of malignant tissue was confirmed by histopathology by a single pathologist (JP).

Nucleic acid extraction

Frozen tissue was disrupted by freeze fracture, Buffer RLT Plus (Qiagen, Hilden, Germany) containing β -mercaptoethanol was added. The lysate was further homogenised using a QIAshredder[®] (Qiagen, Hilden, Germany) column and then underwent enzymatic digestion and nucleic acid extraction with the AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. Both DNA and RNA isolates were stored at -80 °C (Additional file 1).

Quantitative and qualitative assessment of extracted DNA and RNA

The concentration and integrity of sample RNA was assessed with the Bioanalyzer 2100 instrument (Agilent Technologies) using RNA 6000 Nano Kit (Agilent Technologies). The concentration of sample DNA was assessed by Qubit[®] 1.0 Fluorometer (Life Technologies, Carlsbad, California, USA) and the Qubit[®] dsDNA BR Assay Kit (Life Technologies, Carlsbad, California, USA).

Quantification, normalisation and pooling of libraries

Each RNA sample was normalised to $100 \ \mu g/\mu L$ in UltraPureTM DNAse/RNAse-Free Distilled Water (InvitrogenTM, Burlington, USA). Normalised RNA samples were pooled in equimolar amounts according to tissue type i.e. "malignant" or "benign".

16S rRNA amplicon sequencing 16S rRNA polymerase chain reaction

Each PCR reaction contained 1X GeneAmp® PCR Buffer II (Roche Molecular Systems, Inc. Branchburg Township, USA), 10 µM (each) forward and reverse primer, 0.1 U AmpliTaq Gold[®] DNA polymerase (ThermoFisher Scientific, Waltham, Massachusetts, USA), 2.5 µM MgCl₂, 400 µM dNTPs, 2 µL of template DNA in a final volume of 20 µL with UltraPure[™] DNAse/RNAse-Free Distilled Water (Invitrogen[™], Burlington, USA). Amplification of each sample was performed in triplicate using a Veriti[®] 96-well Thermal Cycler (Applied Biosystems, Forster City, CA, USA). Negative amplification controls included dH₂O and TE buffer and the positive amplification control was Salmonella typhimurium (0.5 ng/µL). Cycling conditions were as follows: 95 °C for 5 min, 35 cycles at 95 °C for 45 s, 56 °C for 60 s and 72 °C for 90 s, with a final extension at 72 $^{\circ}\mathrm{C}$ for five minutes.

Primers

Universal primers 101F/534R and 515F/806R were used to amplify the V2-V3 and V4 hypervariable region of the 16S rRNA gene, respectively. The V4 region primer constructs were taken from Caporaso et al. (2011) [11] (supplementary methods). The V2-V3 region primer constructs were modified from [11] using V2-V3 region specific primers [12] to target the 16S rRNA V2-V3 hypervariable region (Additional file 1). Reverse primers were barcoded to enable multiplexing of samples.

Purification of PCR products

Replicate wells were combined for each sample and excess primers, primer dimers and extraneous products were removed using a double-sided size selection/clean-up with Agencourt[®] AMPure[®] XP beads (Beckman Coulter, Inc., Massachusetts, U.S.A). Purified product was eluted in 30 μ L dH₂O.

Quantification and normalization of library pools

Library size and quantity were assessed using the Bioanalyzer 2100 using the High Sensitivity DNA kit (Agilent Technologies Inc., Waldbronn, Germany). Individual samples were combined in equimolar quantities for sequencing.

Sequencing

Three custom primers were used for sequencing of the 16S rRNA V4 region amplicons as described in [11] and the 16S rRNA V2-V3 region amplicons as adapted from Caporaso et al. (2011) [11]. The libraries were sequenced by using the MiSeq[®] 500 cycle Reagent Kit v2 (Illumina, Inc., San Diego, CA, USA).

Data analysis

The quality of raw reads was assessed using FastQC v0.10.1 [13]. Paired-end reads were then stitched using FLASh (Fast Length Adjustment of Short reads) v1.2.6 [14] to generate full length reads of the of the sequenced amplicons. The quality of the FLASh-stitched reads were again assessed using FastQC v0.10.1 [13].

The QIIME (Quantitative Insights Into Microbial Ecology) pipeline and software package (version 1.7.0) [15] were used for data analyses using Closed-reference Operational Taxonomic Unit (OTU) picking. The sequences were clustered against a reference sequence collection [16] (Greengenes 12_10 reference collection) and any reads that did not hit a sequence at 97% sequence similarity to the reference sequence collection were excluded from downstream analysis.

Total RNA/cDNA sequencing

Library preparation and sequencing

Library preparation was performed using the Illumina[®] TruSeq[®] Stranded Total RNA Sample Preparation Kit in accordance with the manufacturer's instructions, however, did not include the initial poly(A) purification step (supplementary methods). The libraries were assessed with the Bioanalyser 2100 using the Bioanalyser DNA 1000 kit (Agilent). Individual libraries (tumour and cancer-unaffected prostate pools) were normalised to 2 nM. Sequencing was performed on the HiSeq[™] 2000.

Data analysis

Raw data underwent quality control and sequencing adapters were removed using Nesoni [17]. The full data set was queried for specific viral genomes (including human papillomaviruses 16 and 18, Herpes simplex virus 2 and Polyomaviruses) using human endogenous retroviruses (HERVs) as internal control as HERVs are remnant ancient retroviral sequences integrated into human germline DNA, some of which are actively transcribed. Reads were mapped to human rRNA (and other noncoding RNA) and to human mRNA using the SHort Read Mapping Package (SHRiMP) [18] and Burrows-Wheeler Aligner (BWA) [19], respectively. Aligned reads were removed from the dataset. Unmapped reads were assembled into contiguous sequences using the *de novo* assembler Velvet [20], under kmer values of 55, 65, 75 and 85. The assemblies were queried with Easy-Web-BLAST+ [21] for 16S rRNA sequences and the presence of viral proteins (specifically all viral polymerases within the NCBI's RefSeq viral protein reference database [22]).

Results

Characteristics of the case series

The mean age at radical prostatectomy of patients was 64.5 years. Three cases underwent radical laparoscopic

robotic prostatectomy while the remaining seven cases had open radical retropubic prostatectomy. All cases were considered to be of an aggressive nature and were selected on the basis of a Gleason score of ≥ 8 and a TNM stage of at least PT2c (Table 1).

16S rRNA V4 hypervariable region

One thousand three hundred and twenty four unique OTUs were identified in all 20 prostate tissue samples combined. Per sample, the mean number of OTUs present was 231.55 (SD 48.45) and ranged from 151 to 314. Community composition was reasonably complex.

Overall, the most abundant taxa identified were assigned to the family *Enterobacteriaceae* (70.1%) and the genus *Escherichia* (6.9%). There were five other unique OTUs that represented $\geq 1\%$ of the microbial community observed across all samples. These taxa included *Pseudomonadaceae* (1.2%), *Comamonadaceae* (1.2%), *Ralstonia* (1.7%), *Pseudomonas* (1.3%) and *Acinetobacter* (1.1%). There were five OTUs that represented 0.5 < 1% of the microbial community observed and these included *Corynebacterium* (0.8%), *Caulobacteriaceae* (0.7%), *Curvibacter* (0.7%) *Aerococcus* (0.6%) and *Bradyrhizobium* (0.6%) The remaining 13.7% of sequences were assigned to 308 other unique OTUs (Additional file 2).

The greatest proportion of sequences, ranging from 37.2 to 81.2%, for each individual sample was represented by the family *Enterobacteriaceae*.. The prevalence of *Escherichia* ranged from 3.1 to 10.3% in the samples. Both taxa were represented in every sample. While there was up to a two-fold difference in the number of observed OTUs (151 to 314) among samples, the community composition of the most abundant samples (abundance > 0.5%) was reasonably consistent across individual samples, however, some taxa including *Pseudomonadaceae, Aerococcus, Corynebacterium* and *Actinobacter lwoffii* were overrepresented in a number of samples when compared to their contribution to overall abundance (Additional file 2).

A group of 18 OTUs was found to be present in 95% of samples (Table 2). While these 18 OTUs only represented a small proportion (on average 7.8%) of the overall membership of prostatic microbial community, they contributed to a large proportion (84.6%) of the relative abundance of the total communities of the 20 samples sequenced. The relative contribution of each 'core' OTU was reasonably consistent across samples (Fig. 1) with *Enterobacteriacae* (84.4%) and *Escherichia* (8.3%) the most abundant taxa contributing the 'core' community.

16S rRNA V2-V3 hypervariable region

Six hundred and thirty four unique OTUs were present in all 20 prostate tissue samples combined. On a per

Patient ID	Gleason Score	TNM Stage	Age (years) at resection	Surgical type	Pre-operative PSA (ng/µL)		
PI	8	PT3AN0	67.6	Open	26.7		
P2	9	PT3B	68.9	Open	6.2		
Р3	9	PT3AN1MX	73.3	Open	1.9		
P4	9	PT2CN0	61.5	Open	3.1 5.7 n/a 13.9		
P5	9	PT2C	59.2	Robot			
P6	9	PT3BN0	64.4	Robot			
P7	8	PT3AN0	68.1	Open			
P8	9	PT3A	61.1	Open	9.2 n/a		
Р9	9	PT3AN0	53.4	Open			
P10	8	PT3AN0	67.8	Robot	8.8		

Table 1 Histopathological features (Gleason score and TNM stage), age at radical prostatectomy and pre-operative PSA ($ng/\mu L$) for ten prostate cancer cases obtained from the Australian Prostate Cancer BioResource

sample basis, the mean number of OTUs present was 117.95 (SD 23.95) and ranged from 71 to 160.

All samples combined, *Enterobacteriaceae* was dominant taxon (55.4%), followed by *Escherichia* (20.9%). There were seven additional OTUs with an abundance $\geq 1\%$ including *Comamonadaceae* (1.8%), *Hyphomonadaceae* (1.5%), *Pseudomonas* (3.4%), *Corynebacterium* (1.3%), *Tepidimonas* (1.2%), *P. acnes* (1.1%) and *Acinetobacter*

(1.0%). *Ralstonia* and *Lutemonas* represented 0.8 and 0.6% of the total microbial community, respectively. The remaining 11% of sequences comprised of the 194 other OTUs (Additional file 3).

The highest proportion of sequences for each individual sample was assigned to *Enterobacteriaceae* with an abundance ranging from 21.9 to 69.4% followed by *Escherichia* with an abundance ranging from 6.5 to

Table 2 Taxonomic assignments of the 18 OTUs present in 95% of samples (n = 20) that underwent sequencing of the V4 hypervariable region of the 165 rBNA gene and their relative abundance

Core OTUs shared by 95% of samples	Relative abundan of OTU within th total community	
	%	
k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Enterobacteriaceae; g_; s_	70.1%	
k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Enterobacteriaceae; g_Escherichia; s_	6.9%	
k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Burkholderiales; f_Oxalobacteraceae; g_Ralstonia; s_	1.7%	
k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_Pseudomonadaceae; g_Pseudomonas; s_	1.3%	
k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Corynebacteriaceae; g_Corynebacterium; s_	0.8%	
k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Burkholderiales; f_Comamonadaceae; g_Curvibacter; s_	0.7%	
k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Caulobacterales; f_Caulobacteraceae; g_; s_	0.7%	
k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Aerococcaceae; g_Aerococcus; s_	0.6%	
k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Staphylococcaceae; g_Staphylococcus; s_	0.4%	
k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Microbacteriaceae; g_; s_	0.4%	
k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Staphylococcaceae; g_; s_	0.3%	
k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Enterobacteriaceae; g_Enterobacter; s_hormaechei	0.3%	
k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_Moraxellaceae; g_; s_	0.2%	
k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Enterobacteriaceae; g_Plesiomonas; s_	0.1%	
k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Streptococcus; s_	0.1%	
k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Enterobacteriaceae; g_Erwinia; s_	<0.1%	
k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Enterobacteriaceae; g_Serratia; s_marcescens	<0.1%	
k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_Moraxellaceae; g_Moraxella; s_	<0.1%	
Sum of "core" OTUs (across 95% of samples)	84.6%	

The letters in the taxonomy column refer to k – kingdom, p – phylum, c –class, o –order, f – family, g – genus, s – species

								_											
5 4			_		V		F						V		~		Σ	A	
1.M	2.M	2.A	3.M	3.A	4.M	4.A	5.M	5.A	6.M	6.A	7.M	7.A	8.M	8.A	9.M	9.A	10.M	10.A	
P1.M	P2.M	P2.A	P3.M	P3.A	P4.M	P4.A	P5.M	P5.A	P6.M	P6.A	P7.M	P7.A	P8.M	P8.A	P9.M	P9.A	P10.M	P10.A	
P1.M	P2.M	P2.A	P3.M	P3.A	P4.M	P4.A	P5.M	P5.A	P6.M	P6.A	P7.M	P7.A	P8.M	P8.A	P9.M	P9.A	P10.M	P10.A	
P1.M	P2.M	P2.A	P3.M	P3.A	P4.M	P4.A	P5.M	P5.A	P6.M	P6.A	P7.M	P7.A	P8.M	P8.A	P9.M	P9.A	P10.M	P10.A	
	P2.M	P2.A	P3.M	P3.A	P4.M	P4.A	P5.M	P5.A			P7.M	P7.A	P8.M	P8.A	P9.M	P9.A	P10.M	P10.A	
∑ ⊄ Legend									Taxono	omy								P10.A	
			eria; p	_Actinol	bacteria	; cAct	inobact	eria; o_	Taxono _Actinor	o my nycetale	es; fCo	oryneba	acteriace	eae; g(Coryneb	acteriu		P10.A	
			eria; p	_Actinol	bacteria	; cAct obacteri	inobact ia; cA	eria; o_ ctinobao	Taxono _Actinor cteria; o_	omy nycetale Actino	es; fCo omyceta	oryneba ales; f	acteriace Microba	eae; g(acteriace	Coryneb eae; g;	acteriu		P10.A	
			ria; p kBac	_Actinol cteria; p kE	bacteria Actin 3acteria	; cAct obacteri ; pFirr	inobact ia; cA micutes;	eria; o ctinobao ; cBac	Taxono _Actinor cteria; o_ illi; oE	omy nycetale Actino acillales	es; fCo omyceta s; fSta	oryneba iles; f iphyloco	acteriace	eae; g(acteriace e; g; s;	Coryneb eae; g;	acteriu ; s		P10.A	
			ria; p kBac kB	_Actinol cteria; p kE Bacteria;	bacteria Actin 3acteria, ; pFirr	; cAct obacteri ; pFirr micutes;	inobact ia; cA nicutes; ; cBac	eria; o ctinobad : cBac illi; ot	Taxono _Actinor cteria; o_ illi; oE Bacillales	omy nycetale Actino acillales ;; fSta	es; fCo omyceta s; fSta aphylocc	oryneba iles; f iphyloci occacea	acteriace Microba	ae; g acteriace a; g; s_ aphyloco	Coryneb eae; g; occus; s_	acteriu ; s		P10.A	
			ria; p kBac kB	_Actinol :teria; p kE Bacteria; Bacteria	bacteria Actin 3acteria, ; pFirr a; pFi	; cAct obacteri ; pFirr micutes; rmicutes	:inobact ia; cA micutes; : cBac s; cBa	eria; o ctinobac : cBac illi; ot ucilli; o	Taxono _Actinor cteria; o_ illi; oE 3acillales _Lactoba	omy nycetale Actino acillales ;; fSta cillales;	es; fCo omyceta s; fSta ophylocc fAero	oryneba iles; f iphyloci occacea	acteriace Microba occaceae e; gSt;	acteriace ecteriace e; g; s_ aphyloco Aerocoo	Coryneb eae; g; occus; s_ ccus; s_	acteriu ; s 		P10.A	
		<bacte< th=""><th>eria; p kBac kB kBa kBa</th><th>_Actinoł cteria; p kB Bacteria; Bacteria; p</th><th>bacteria Actin 3acteria, ; pFir a; pFi pFirm</th><th>; cAct obacteri ; pFirr micutes; rmicutes; c</th><th>:inobact ia; cA micutes; ; cBac s; cBac cBacil</th><th>eria; o ctinobad : cBac illi; ot icilli; ota</th><th>Taxono _Actinor cteria; o_ illi; oB Bacillales _Lactoba actobacil</th><th>omy nycetale Actino acillales ;; fSta cillales; f_ lales; f_</th><th>es; fCo omyceta s; fSta phylocc fAero _Strepto</th><th>oryneba ales; f aphyloco occacea occoccac</th><th>acteriace Microba occaceae e; gSta reae; g_</th><th>eae; g(acteriace e; g; s_ aphyloco _Aerocoo _Strepto</th><th>Coryneb eae; g occus; s occus; s occus; s</th><th>acteriu ; s s</th><th></th><th>P10.A</th><th></th></bacte<>	eria; p kBac kB kBa kBa	_Actinoł cteria; p kB Bacteria; Bacteria; p	bacteria Actin 3acteria, ; pFir a; pFi pFirm	; cAct obacteri ; pFirr micutes; rmicutes; c	:inobact ia; cA micutes; ; cBac s; cBac cBacil	eria; o ctinobad : cBac illi; ot icilli; ota	Taxono _Actinor cteria; o_ illi; oB Bacillales _Lactoba actobacil	omy nycetale Actino acillales ;; fSta cillales; f_ lales; f_	es; fCo omyceta s; fSta phylocc fAero _Strepto	oryneba ales; f aphyloco occacea occoccac	acteriace Microba occaceae e; gSta reae; g_	eae; g(acteriace e; g; s_ aphyloco _Aerocoo _Strepto	Coryneb eae; g occus; s occus; s occus; s	acteriu ; s s		P10.A	
	k	<bacte< th=""><th>ria; p kBac kB kBacter :eria; p_</th><th>_Actinol cteria; p kE Bacteria; Bacteria; p ria; pf Protee</th><th>bacteria Actin 3acteria ; pFirn a; pFi pFirm Proteob obacter</th><th>; cAct obacteri ; pFirr micutes; rmicutes; c acteria; ia; cB</th><th>inobact ia; cA micutes; ; cBac s; cBac cBacil cAlpł etaprote</th><th>eria; o_ ctinobac ; cBac illi; of icilli; of li; oLa naprotec eobacte</th><th>Taxono _Actinor cteria; o_ illi; oE Bacillales _Lactoba ctobacil obacteria ria; oE</th><th>omy nycetale actino actilales ;; fSta cillales; f_ lales; f_ a; oCa Burkhold</th><th>es; fCo omyceta s; fSta aphylocc fAero _Strepto aulobact deriales;</th><th>oryneba ales; f aphyloco occacea occoccac occoccac cerales; fCor</th><th>acteriace Microba occaceae e; gSt; eae; g ceae; g fCaulo namona</th><th>eae; g acteriace e; g; s_ aphyloco _Aerocoo _Strepto obbactera daceae;</th><th>Coryneb eae; g occus; s occus; s occus; s aceae; g_ gCurv</th><th>acteriu ; s - s; s /ibacter</th><th>m; s ;; s</th><th>P10.A</th><th></th></bacte<>	ria; p kBac kB kBacter :eria; p_	_Actinol cteria; p kE Bacteria; Bacteria; p ria; pf Protee	bacteria Actin 3acteria ; pFirn a; pFi pFirm Proteob obacter	; cAct obacteri ; pFirr micutes; rmicutes; c acteria; ia; cB	inobact ia; cA micutes; ; cBac s; cBac cBacil cAlpł etaprote	eria; o_ ctinobac ; cBac illi; of icilli; of li; oLa naprotec eobacte	Taxono _Actinor cteria; o_ illi; oE Bacillales _Lactoba ctobacil obacteria ria; oE	omy nycetale actino actilales ;; fSta cillales; f_ lales; f_ a; oCa Burkhold	es; fCo omyceta s; fSta aphylocc fAero _Strepto aulobact deriales;	oryneba ales; f aphyloco occacea occoccac occoccac cerales; fCor	acteriace Microba occaceae e; gSt; eae; g ceae; g fCaulo namona	eae; g acteriace e; g; s_ aphyloco _Aerocoo _Strepto obbactera daceae;	Coryneb eae; g occus; s occus; s occus; s aceae; g_ gCurv	acteriu ; s - s; s /ibacter	m; s ;; s	P10.A	
	k	<bacte kBact kBact</bacte 	ria; p kBac kB kBa _Bacter :eria; p_ cteria; p	_Actinol cteria; p kB Bacteria; Bacteria; p ria; pf ria; pf pProte	bacteria Actin 3acteria, ; pFirn a; pFirm Proteob obacter teobacte	; cAct obacteri ; pFirr micutes; r nicutes; c acteria; ia; cBe eria; c	inobact ia; cA micutes; ; cBac s; cBac cBacil cAlpł etaproto Betaproto	eria; o ctinobac cBac illi; ot ncilli; ot li; ota naprotec eobacte oteobact	Taxono _Actinor cteria; o_ illi; oB Bacillales _Lactoba ctobacil obacteria ria; oE eria; o	omy Actino actilales ;; fSta cillales; f lales; f a; oCa Burkholo _Burkholo	es; fCo omyceta s; fSta phylocc fAero _Strepto aulobact deriales; olderiale	oryneba ales; f occacea occcaca occccac occccac cerales; fCor s; fO	acteriace Microba occaceae e; gSt; eae; g teae; g fCaulo namona xalobact	eae; g acteriace e; g; S_ aphyloco _Aerocoo _Strepto obbactera daceae; eraceae	Coryneb eae; g occus; s_ ccus; s_ cccus; s_ gCurv ; gRal	acteriu ; s ; s /ibacter stonia;	m; s ;; s s	P10.A	
		<bacte kBact kBact kBa</bacte 	ria; p kBac kBacter Bacter :eria; p_ cteria; j acteria;	_Actinol :teria; p k Bacteria; Bacteria; p ria; p Prote pProt	bacteria Actin 3acteria, ; pFirr a; pFirm Proteob obacter teobacter oteobact	; cAct obacteri ; pFirr micutes; c nricutes; c acteria; ia; cBe eria; c teria; c_	inobact ia; cA micutes; ; cBac s; cBac cBacil cAlpł etaprot Betaprot _Gamm	eria; o ctinobac c cBac illi; o li; oLa naprotec eobacte oteobact aprotec	Taxono _Actinor cteria; o_ illi; oB actillales _Lactoba ctobacil obacteria ria; o eria; o bacteria	omy nycetale Actino acillales; i; fSta cillales; f lales; f a; oCa Burkholo _Burkholo ; oEn	es; fCo omyceta s; fSta phylocc fAero _Strepto aulobact deriales; olderiale terobac	oryneba ales; f ophyloco occacea occoccac cerales; fCor s; fO teriales	acteriace Microba occaceae e; gSt; æae; g_ teae; g_ fCaulo namona xalobact ;; fEnt;	eae; g(acteriace ; g; s_ aphyloco _Aerocod _Strepto obactera daceae; eraceae erobacte	Coryneb eae; g occus; s ccus; s cccus; s cccus; g_ gCurv ; gRal eriaceae	acteriu ; s ; s /ibacter stonia; ; g; s	m; s ;; s s		
	k_Bacter	<bacte kBacte kBact kBa ria; pF</bacte 	ria; p kBac kBacter Bacter cteria; p_ cteria; p acteria;?	_Actinol teria; p, kE Bacteria; Bacteria; pf ria; pf pProte pProt ; pProt acteria;	bacteria Actin 3acteria ; pFir a; pFir pFirm Proteob obacter :eobacter :eobactec :cGan	; cAct obacteri ; pFirr micutes; rmicutes; c acteria; cateria; c eria; c teria; c nmapro	inobact ia; cA micutes; cBac cBacil cAlpl etaprot Betaprot _Gamm teobact	eria; o ctinobad ; cBac illi; o li; oLa naprotec eobacte oteobact oteobact aprotec eria; o	Taxono _Actinor _teria; o_ illi; oE Bacillales _Lactobacil obacteria ria; oE eria; o eria; o bacteria Enterob	omy nycetale Actino acillales; fSta cillales; f lales; f a; oCa surkholo _Burkholo _Burkholo _Burkholo _Burkholo _Burkholo	es; fCo omyceta s; fSta phylocc fAero Strepto aulobact deriales; olderiale terobac les; fE	oryneba ales; f occacea occocaco cococcac rerales; fCor s; fO teriales interob	acteriace Microba occaceae e; gSt; eae; g fCaulo namona xalobact ;; fEnto acteriaco	eae; g(acteriace 2; g; s aphyloco _Aerocod _Strepto obactera daceae; daceae; eraceae erocacte	Coryneb eae; g occus; s occus; s gCurv ; gRal eriaceae Enterob	acteriu ; s ; s /ibacter stonia; ;; g; s, acter; s	m; s ;; s s ishorr		
	k_Bacte	k_Bacte k_Bacte k_Ba k_B ria; p_F	ria; p	_Actinol teria; p. k	bacteria Actin 3acteria ; pFir pFirm Proteob obacter ceobacte bteobacte cGan bbacteria	; cAct obacteri ; pFirr micutes; rmicutes; c acteria; c eria; cB eria; c teria; c nmaproi a; cGa	inobact ia; cA micutes; cBac s; cBac cBacil cAlpl etaprot Betaprot Gamm teobact	eria; o_ ctinobac ; cBac illi; ot icilli; ot inaprotec eobacte oteobacte oteobacte eria; o oteobac	Taxone _Actinor _teria; o_ illi; oB _actobacil _Lactobacil obacteria ria; oB eria; o bacteria _Enterok teria; o	omy nycetale Acting acillales; fSta cillales; f a; oCa Burkholo Burkholo ; oEn pacterial _Enterc	es; fCo omyceta s; fSta aphylocc fAero _Strepto aulobact deriales; olderiale terobac les; fE obacteri	oryneba ales; f occacea occcacea occcacea occcacea cerales; fCor s; fO teriales interob ales; f	acteriace Microba occaceae e; gSta eae; g fCaulo namona xalobact ; fEnte acteriaco _Enterol	eae; g(acteriace a; g; s_ aphyloco _Aerocou _Strepto obactera daceae; eraceae erobacte eae; g oacteriao	Coryneb eae; g occus; s occus; s occcus; g_ gCurv ; gRal eriaceae Enterob ceae; g_	acteriu ; s ; s /ibacter stonia; ; g; s acter; s Erwini	m; s ; s s horr	naechei	
	k_Bacter	k_Bacte k_Bact k_Bact k_Bacteri _Bacteri	ria; p kBac kB k kBacter eria; p_ cteria; p cteria; p cteria; p_ acteria; p Proteob eria; pP	_Actinol cteria; p k	bacteria Actin 3acteria; ; pFirm pFirm Proteob obacter ceobacter teobacter teobacter acteria;	; cAct obacteri ; pFirr micutes; rmicutes; acteria; c teria; c nmapro a; cGa	inobact ia; cA micutes; cBac cBacil cAlpl etaproto Betaproto Gamm teobact immaprot	eria; o ctinobac : cBac illi; ot icilli; ot icilli; ot aprotec eobacte oteobacte aprotec eria; o oteobacte	Taxone _Actinor cteria; o_ illi; oB Bacillales _Lactobacil obacteria obacteria; o eria; o ria; o eria; o	omy nycetale Acting acillales; fSta cillales; f a; oCa Burkholo Burkholo ; oEn bacterial _Entero Enterob	es; fCo omyceta s; fSta aphylocc fAero _Strepto aulobact deriales; olderiale terobac les; fE obacterial	oryneba ales; f opccacea occcacea occcacea cerales; fCor s; fO teriales interob ales; fes; fes; fes;	acteriace Microba occaceae e; gSt; eae; g fCaulo namona xalobact ; fEntro acteriaco _Enteroba	eae; g(acteriace e; g; s_ aphyloco _Aerocoo _Strepto obactera daceae; eraceae erobacte eae; g oacteriac	Coryneb eae; g occus; s ccus; s ccus; s gCurv ; gRal eriaceae Enterob ceae; g ae; gE	acteriu ; s	m; s s s a; s hia; s	naechei –	
	k_Bacter	<bacte kBacte kBacte ria; pF kBacteri Bacteria</bacte 	ria; p kBac k kBacter eria; p cteria; p cteria; p proteob eria; pP a; pP	_Actinol cteria; p. kE Bacteria; Bacteria; pf p_Prote p_Prote p_Prote p_Proteo Proteoba roteoba	bacteria Actin 3acteria, ; pFirn a; pFirm Proteob obacter ceobacter ceobacter ceobacteria; acteria; c	; cAct obacteri ; pFirr micutes; rmicutes; icutes; c acteria; c teria; c nmapro a; cGa cGam :Gam	inobact ia; cA micutes; ; cBac s; cBac cBacil cAlpl etaproto Betaproto Gamm teobact mmaproto	eria; o_ ctinobac ; cBac illi; ot ili; ot aprotec oteobacte oteobacte eria; o oteobacte eobacte	Taxone _Actinor cteria; o_ illi; oE Bacillales _Lactoba ctobacteria ria; oE eria; o ceria; o iria; oE ia; oE	omy nycetale Actino acillales; fSta cillales; f a; oCa Burkholo _Burkholo ; oEn bacterial _Enterob nteroba	es; fCo pmyceta s; fSta aphyloco fAero _Strepta aulobact deriales; olderiales; terobac les; fE obacterial acteriale	oryneba ales; f opccacea occcacea occcacea occccace cocccace s; fCor s; fO teriales interob ales; fE s; fE	acteriace Microba occaceae e; gSt eae; g fCaulo namona xalobact ;; fEnt acteriaco _Enteroba interobac	eae; g acteriace e; g; s_ aphyloco _Aerocod _Strepto obactera daceae; eraceae erobacter eae; g oacteriace cteriace teriacea	Coryneb eae; g occus; s ccus; s ccus; s gCurv ; gRal eriaceae Enterob ceae; g fae; gP	acteriu ; s	m; s s s i horr hia; s hia; s	naechei -	
	k_Bacter	<bacte kBacte kBa ria; pF kBacteri Bacteria cteria; p</bacte 	ria; p kBac kBacter cteria; p_ cteria; p acteria; Proteob eria; pP a; pPr Prote	_Actinol cteria; p k	bacteria Actin 3acteria, ; pFirn a; pFirm Proteob obacter teobacter teobacteria ccGan obacteria; ccteria; c ria; cC	; cAct obacteri ; pFirr micutes; rmicutes; c acteria; c teria; c teria; c nmaprof a; cGam cGam Gammap	inobact ia; cA micutes; ; cBac s; cBac cBacil cAlpł etaprote Betaprote Gamm teobact immaprot maprote proteoba	eria; o ctinobac cBac illi; o li; oLa naprotec eobacte oteobact eria; o_ oteobacte eobacter eobacter cobacter acteria;	Taxono _Actinor cteria; o_ illi; oB Bacillales _Lactoba ctobacil obacteria obacteria; o bacteria; o tria; o ria; oE oEnter	pmy nycetale Actino acillales; fSta cillales; f a; oCa Burkholo _Burkholo _Burkholo ; oEn pacterial _Enterob nteroba robacte	es; fCo omyceta s; fSta phylocc fAero Strepto aulobact deriales; olderiales; slderiale terobac les; fE bbacterial acteriale riales; f_	oryneba ales; f aphylocioccaca occcaca occcaca occcaca erales; fCor s; fO teriales interob ales; fE s; fE s; fEr _Enter	acteriace Microba occaceae e; gSt; eae; g reae; g fCaulo namona xalobact i; fEnto acteriaco _Enteroba interobac obacteri	eae; g acteriace a; g; s, aphyloco _Aerocoo _Strepto obactera daceae; erobactera daceae; g oacteriace teriacea teriacea; g	Coryneb eae; g occus; s cccus; s cccus; s cccus; s gCurv ; gRal eriaceae Enterob ceae; gE ae; gPl gSerra	acteriu ; s; s ; s; s vibacter stonia; ;; g; s pacter; s Erwini Escheric lesiomo tia; s	; s s hia; s mas; s	naechei -	
	k_Bacter	k_Bacteria k_Bacteria cteria; p_ k_Bacteria k_Bacteria k_Bacteria; p_ k_	ria; p kBac kBacter eria; p cteria; p cteria; p proteob eria; pP a; pPr Prote Bacteri	_Actinol :teria; p k	bacteria Actin 3acteria, ; pFirn a; pFirm Proteob obacter cobacter cobacteria; cceria; c cteria; c cria; cC Proteoba	; cAct obacteri ; pFirr micutes; r micutes; c acteria; c teria; c nmaproi a; cGam cGam Gammap acteria; c	inobact ia; cA micutes; ; cBac s; cBac cBacil cAlpł etaprote Betaprote Gamm teobact immaprote proteoba cGam	eria; o ctinobac cBac illi; o li; oLa naprotec eobacte oteobact eria; o_ oteobacte eobacter acteria; maprote	Taxono _Actinor cteria; o_ illi; o Bacillales _Lactobacil obacteria; dobacteria; eria; o eria; o tria; o ia; o ia; o enteria; o ria; o	omy nycetale Actino acillales; fSta cillales; fSta cillales; fGa; a; oCa Burkholo _Burkholo _Burkholo _Burkholo _Enteroba nteroba robacte ria; oF	es; fCo omyceta s; fSta phylocc fAero Strepto aulobact deriales; olderiales; fE obacteriale acteriale acteriale riales; f Pseudon	oryneba ales; f occacea occcaca occcaca cerales; fCor s; fO teriales interob ales; fE s; fE s; fE s; fE rEnter nonada	acteriace Microba occaceae e; gSt: eae; g_ fCaulo namona xalobact ;; fEnt acteriaco Enteroba interobac obacteri les; fN	eae; g acteriace a; g; s_ aphyloco _Aerocod _Strepto obactera daceae; eraceae eraceae eraceae; g oacteriace teriacea teriacea; faceae; g	Coryneb eae; g occus; s ccus; s ccus; s gCurx, ; gCurx, ; gRal eriaceae; Enterob ceae; gE ae; gPi gSerra acceae; g	acteriu ; s	;; s ss ishorr ia; s ihia; s mas; s marces	naechei -	
	k_Bacter	<bacteria kBacteria; pP kBacteria Bacteria; p_ kBacteria; p_ k kBact</bacteria 	ria; pkBac kBacter kBacter cteria; p cteria; p cteria; p proteob eria; pP a; pPr a; pProte Prote Bacteri eria; p	_Actinol teria; p kE Bacteria; p Bacteria; pf pProtec Proteo Proteo Proteo Proteo Cobacter ia; pP	bacteria Actin 3acteria ; pFir pFirm Proteob obacter ceobacter ceobacteria; cteria; cC Proteoba obacteria;	; cAct obacteri ; pFirr micutes; rmicutes; cacteria; c teria; cBo eria; cBo eria; cGa cGam cGam Gammap acteria; cGa	inobact ia; cA micutes; cBac cBacil cAlpl etaprote Betaprote Gamm teobact immaprote proteoba cGam ammapp	eria; o ctinobad ; cBac illi; o li; oLa naprotec eobacte oteobact eria; o oteobacte eobacter acteria; maprotec roteobad	Taxono _Actinor cteria; o_ illi; oE Bacillales _Lactobacil obacteria ria; oE eria; o eria; o tria; oE ria; oE ria; oE oEnter oEnter oEnter oEnter oEnter	Actino acillales; acillales; acillales; lales; fSta cillales; lales; f a; oCa Burkholo	es; fCo omyceta s; fSta phylocc fAero Strepto aulobact deriales; olderiale terobacteriale acteriale acteriale cteriales; f Pseudon domona	oryneba ales; f occacea occcaca occcaca cococcac erales; fCor s; fO teriales interob ales; fE s; fEr s; fEnter nonada dales; f	acteriace Microba occaceae e; gSt; eae; g fCaulo namona xalobact i; fEnteroba interobac obacteri les; fN	eae; g(acteriace a; g; s aphyloco _Aerocod _Strepto obactera daceae; erobactera daceae; g oacteriace teriacea teriacea; g Aoraxell cellaceae	Coryneb eae; g occus; s ccus; s cccus; s gCurv ; gRal eriaceae; g rae; gE eae; gPl gSerra aceae; g e; gM	acteriu ; s	m; s ; s s hia; s inas; s marces	naechei _ scens	
	k_Bacter	k_Bacte k_Bacte k_Bacte Bacteria Bacteria cteria; p_ k_Bact	ria; pkBac kBacter kBacter ceria; p cteria; p croteob eria; pP a; pPr Prote Bacteri eria; p pPro	_Actinol teria; p kE Bacteria; p Bacteria; pf pProtec Proteo Proteo Proteo Proteo Cobacter ia; pP	bacteria Actin 3acteria ; pFir pFirm Proteob obacter ceobacter ceobacteria; cteria; cC Proteoba obacteria;	; cAct obacteri ; pFirr micutes; rmicutes; cacteria; c teria; cBo eria; cBo eria; cGa cGam cGam Gammap acteria; cGa	inobact ia; cA micutes; cBac cBacil cAlpl etaprote Betaprote Gamm teobact immaprote proteoba cGam ammapp	eria; o ctinobad ; cBac illi; o li; oLa naprotec eobacte oteobact eria; o oteobacte eobacter acteria; maprotec roteobad	Taxono _Actinor cteria; o_ illi; oE Bacillales _Lactobacil obacteria ria; oE eria; o eria; o tria; oE ria; oE ria; oE oEnter oEnter oEnter oEnter oEnter	Actino acillales; acillales; acillales; lales; fSta cillales; lales; f a; oCa Burkholo	es; fCo omyceta s; fSta phylocc fAero Strepto aulobact deriales; olderiale terobacteriale acteriale acteriale cteriales; f Pseudon domona	oryneba ales; f occacea occcaca occcaca cococcac erales; fCor s; fO teriales interob ales; fE s; fEr s; fEnter nonada dales; f	acteriace Microba occaceae e; gSt: eae; g_ fCaulo namona xalobact ;; fEnt acteriaco Enteroba interobac obacteri les; fN	eae; g(acteriace a; g; s aphyloco _Aerocod _Strepto obactera daceae; erobactera daceae; g oacteriace teriacea teriacea; g Aoraxell cellaceae	Coryneb eae; g occus; s ccus; s cccus; s gCurv ; gRal eriaceae; g rae; gE eae; gPl gSerra aceae; g e; gM	acteriu ; s	m; s ; s s hia; s inas; s marces	naechei _ scens	

(See figure on previous page.)

Fig. 1 Taxa summary of 'core' OTUs identified in 95% of samples (n = 20) that underwent sequencing of the V4 hypervariable region of the 16S rRNA gene. The figure depicts the relative contribution of each member of the 'core' community to each sample in addition to its overall contribution to the core community over all samples combined. The contribution of taxa to the core community is expressed as a percentage. The letter A next to the patient ID denotes "adjacent" tissue and M denotes "malignant" tissue. The letters in the taxonomy column refer to k – kingdom, p – phylum, c –class, o –order, f – family, g – genus, s – species

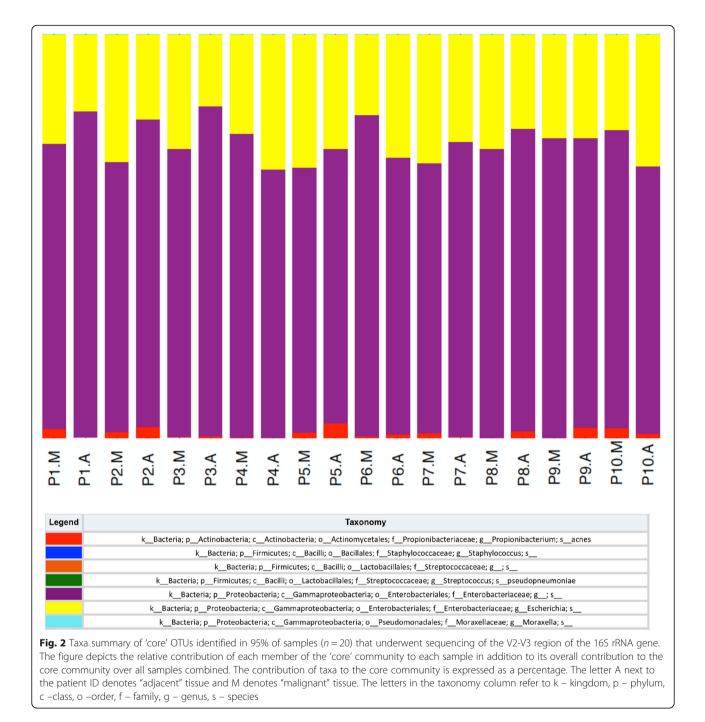
29.9%. Both were represented in every sample. The contribution of the most abundant taxa (>0.5%) to the community composition of each sample was reasonably consistent despite a two-fold difference in the number of observed OTUs (71 to 160). However, some taxa were overrepresented in a number of samples when compared to their contribution to overall abundance (Additional file 3).

Seven OTUs were represented in 95% of samples (n =20) and together they constituted the 'core' community within these prostate tissue samples (Table 3). These OTUs were assigned to Enterobacteriaceae and Streptococcaceae, Staphylococcus, Escherichia, Moraxella, Propionibacterium acnes and Streptococcus pseudopneumoniae. Despite these 'core' OTUs representing only a small proportion (on average 5.9%) of the mean number of OTUs that comprise the overall prostatic microbial community, they contributed to a very large proportion (77.9%) of the relative abundance of the total communities of the 20 samples sequenced. The relative contribution of each of the seven 'core' OTUs was reasonably consistent across individual samples (Fig. 2). Enterobacteriaceae and Escherichia were observed to be the most abundant taxa contributing to the 'core' community with a relative abundance of 72.2 and 26.6% respectively.

Total RNA sequencing

Human endogenous retroviral sequences (HERVs) were successfully detected in both benign and malignant datasets. After removing human ribosomal RNA and other non-coding read pairs, approximately 20 million read pairs remained for each of the malignant and benign prostate tissue datasets. Removing human mRNA left approximately 2.8 million unmapped read pairs for both the malignant and benign datasets. The unmapped reads were assembled into contiguous sequences using Velvet at kmer values of 55, 65, 75 and 85 and were queried for sequences of interest using BLAST. Sequences identified as belonging to *Pseudomonas* spp. were detected in the benign prostate tissue dataset. No sequences analogous to the NCBI RefSeq [22] library of viral polymerases (with the exception of HERVs) were detected. No specific viral sequences including human papillomaviruses, polyomaviruses, herpes simplex virus 1 and 2, were detected in either dataset.

Discussion


We used broad-range methods (one targeted and one agnostic) to explore and characterise microbial constituents within the prostate tissue of men with aggressive prostate cancer.

Previous studies have investigated the presence of bacterial, viral and prokaryotic organisms and their association with prostate cancer [9, 23, 24] using other methodologies including traditional bacterial culture, specific, targeted PCR and bacterial 16S rRNA amplification, traditional cloning and capillary sequencing methods. The advantage of MPS, in this context, is the capacity to sequence the entire genomic/transcriptomic content of samples without *a priori* knowledge of specific genes and targets [25], in addition to its sensitivity

Table 3 Taxonomic assignments of the 7 OTUs present in 95% of samples (n = 20) that underwent sequencing of the V2-V3 region of the 16S rRNA gene and their relative abundance

Core OTUs shared by 95% of samples	Relative abundance of OTU within the total community
	%
k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Enterobacteriaceae; g_; s_	55.4%
k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Enterobacteriaceae; g_Escherichia; s_	20.9%
k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Propionibacteriaceae; g_Propionibacterium; s_acnes	1.1%
k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Staphylococcaceae; g_Staphylococcus; s_	0.4%
k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_; s_	0.1%
k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Streptococcus; s_pseudopneumoniae	<0.1%
k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_Moraxellaceae; g_Moraxella; s_	<0.1%
Sum of "core" OTUs (across 95% of samples)	77.90%

The letters in the taxonomy column refer to k - kingdom, p - phylum, c -class, o -order, f - family, g - genus, s - species

and high-throughput capability. However, despite the advantages of applying new technology to a decades-old question, the data generated and the methods used for data analysis were still in early development. As this field evolves, the methods, data, analytical tools and strategies will become more refined and enable further elucidation of these study questions.

To date, five studies [8, 9, 26–28] have investigated and characterised bacterial 16S rRNA sequences in prostate tissue collected from prostate cancer patients. Only one of these studies [28] found no evidence of 16S rRNA sequences in prostate cancer tissues. Four studies [8, 9, 26, 27] demonstrated the presence of bacterial sequences in 88.9, 85.7, 19.6 and 87% of patients, respectively. The most common organisms identified in these studies were members of the family *Enterobacteriaceae* and specifically species related to *Escherichia coli*. These findings are consistent with the results of the present study. In addition, analysis of the 16S rRNA V4 region sequencing data identified *Actinobacter* spp., *Pseudomonas* spp. and

Streptococcus spp. as being present in 95% of all prostate samples therefore members of the 'core' community, in accordance with Sfanos et al. (2008). Analysis of the V2-V3 region also identified *Enterobacteriaceae, Escherichia* spp. as the predominant taxa within this sample of prostate tissues in addition to *Staphylococcus* spp, *Streptococcus* spp, *Moraxella* spp., and *Propionibacterium acnes* as members of the 'core' community.

Distinguishing between contamination of tissue and 'true' prostatic microbial constituents is one of the main challenges of bacterial community studies. Studies [8, 27] have suggested that the presence of bacterial sequences in prostate cancer tissues reflects bacterial contamination of the prostate via transrectal prostate biopsy of prostate which is routinely performed to confirm a diagnosis of prostate cancer. This could explain the presence of bacterial 16S rRNA sequences in prostate tissue samples from prostate cancer patients and the range of organisms detected in our dataset also supports this hypothesis.

Catheterization of patients has also been suggested as a way in which the prostate may be contaminated with bacteria. Hochrieter et al. (2000) detected 16S rRNA sequences in all four prostate tissue samples taken from a benign prostatic hyperplasia (BPH) patient that had an indwelling catheter for several weeks before radical prostatectomy [27]. Gorelick et al. (1988) performed quantitative bacterial culture of prostate tissues from prostatectomy patients to determine the prevalence of prostate bacterial infection or colonization [29]. They reported that 34% of patients with a pre-operative indwelling catheter returned a positive prostatic culture. Organisms were identified as common urinary tract pathogens including E. coli and Streptococcus fecalis. The pre-operative status with respect to catheterization of patients included in this study is unknown, however, it is a possibility that bacterial sequences identified in our samples could have been introduced in this way.

Sequences representing Propionibacterium acnes were detected in the V2-V3 16S rRNA dataset in 95% of samples albeit at low abundance. This study reports a 95% prevalence of P. acnes in prostate tissue samples which is consistent with the 100% prevelance of P. acnes detected in prostatic intraepithelial neoplasia (PIN) lesions and 78% of prostate cancer tissues reported by Fehri et al. (2011) but approximately two-fold higher than the prevalence of *P. acnes* reported by other studies [1, 2, 9, 30]. The present study could not determine whether the P. acnes sequences detected in the V2-V3 dataset represented either urogenital or cutaneous strains. Therefore, it is difficult to ascertain if the P. acnes detected in these samples represent contamination through laboratory handling and reagents or if they have biological significance.

The study design and methods employed in this study had several limitations that may have diminished the ability to detect infectious organisms in prostate tissues that were of clinical significance. The study design employed to identify potential infectious agents associated with prostate cancer was limited by study sample collection methods, the sampling of prostate tissue, small sample size and sensitivity of detection (total RNA sequencing). In addition, there were inherent limitations to our study design including the presence of multiple 16S rRNA gene copies, extraction methods, library preparation, experimental controls and bioinformatics approaches.

The 16S rRNA gene occurs in at least one copy of every bacterial genome, however can also occur as multiple and heterogeneous copies with copy number ranging from 1 to 15 [31]. The E. coli genome contains seven copies of the 16S rRNA gene and the P. acnes genome three copies [32]. Most 16S rRNA gene surveys assume that the relative abundance of 16S sequences are an accurate surrogate measure of the relative abundance of microorganisms in studies of community composition [31]. However, differences in the copy number/heterogeneity of the target 16S rRNA gene may result in overestimation of diversity and abundance [33, 34]. Therefore, inferences made on the basis of relative abundance of 16S rRNA genes may not be an accurate representation of actual community composition [31, 35] and variation in 16S rRNA gene copies can be a source of significant systemic bias within 16S rRNA gene surveys [33]. This study did not normalize for variation in 16S rRNA copy number and therefore it is unlikely that the reported relative abundances of taxa identified reflected actual taxa abundance. However, there are software tools [31] and a publicly available curated database (ribosomal RNA operon copy number database or rrnDB [35]) that could be applied to estimate actual organism abundance from 16S rRNA gene abundance data in future work.

There is considerable scope to extend and improve upon the experimental design of this study in investigating a *persistent* infectious aetiology for prostate cancer. Incorporating a prospective study design that collected tissues specifically for PCR- and sequencing-based analyses may reduce the prevalence of contaminating sequences. Inclusion of (a) control group(s) that included samples from lower grade and less aggressive prostate cancer cases and cancer-unaffected prostates such as those from organ donors, cystoprostatectomy and/or BPH cases would allow comparison between the microbial constituents of different prostate pathologies (if any) and normal prostate tissue. In addition, a greater number of cases would ensure that the study is sufficiently powered to detect differences in microbial communities

(if any) between groups. Sampling a greater proportion of the prostate gland at several anatomical sites would provide comprehensive coverage of the prostate gland as a whole. With regard to 16S rRNA amplicon sequencing, the inclusion of extraction, PCR and water controls in sequencing runs would also provide a profile of laboratory contaminants so that 'true' microbial constituents (if any) could be distinguished from contaminating sequences. Normalization of 16S rRNA datasets to account for heterogeneity of 16S rRNA gene copies would also provide more accuracy with respect to relative organismal abundance. In terms of RNA sequencing, depletion of host RNA and enrichment of microbial rRNA and mRNA may increase detection sensitivity. If microorganisms of interest were detected, follow-up studies including verification of specific infectious agents in original nucleic acid samples via PCR and tissue localization studies would be warranted.

Conclusions

An infectious aetiology for prostate cancer has long been conjectured. We evaluated new technology to assess if its use could clarify the inconsistency in evidence related to the nature of possible infection(s) and their relationship to prostate tumour grade. We applied targeted and agnostic approaches both involving MPS. This technology detected endogenous retroviruses providing proof of concept but there was no clear evidence of clinically significant bacterial or viral sequences in prostate cancer tissue. As these investigative methods and protocols become more refined, MPS approaches are anticipated to have significant utility in identifying potential pathogens involved in disease aetiology. Further studies, specifically designed to detect associations between the disease phenotype and aetiological agents, are required.

Additional files

Additional file 1: Supplementary methods. (DOCX 21 kb) Additional file 2: Complete 16 rRNA V4 region taxa summary. (DOCX 2335 kb)

Additional file 3: Complete 16 rRNA V2-V3 region taxa summary. (DOCX 1291 kb)

Abbreviations

cDNA: complementary DNA; COX-2: Cyclooxygenase-2; DNA: Deoxyribonucleic acid; HERV: Human endogenous retrovirus; MPS: Massively parallel sequencing; mRNA: messenger RNA; OTU: Operational taxonomic unit; PCR: Polymerase chain reaction; RNA: Ribonucleic acid; RNASEL: Ribonuclease L; rRNA: Ribosomal RNA; SD: Standard deviation; TLR4: Toll-like receptor 4

Acknowledgements

Data analyses of the V2-V3 and V4 16S rRNA datasets were carried out by Gayle Philip, Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, University of Melbourne. Data analyses of the total RNA sequencing datasets were carried out by Dieter Bulach, Life Sciences

Computation Centre, Victorian Life Sciences Computation Initiative, University of Melbourne.

Amplification primers that targeted the V2-V3 hypervariable region of the 16S rRNA gene were adapted/designed by Josef Wagner (JW), Murdoch Children's Research Institute.

The authors would like to express their appreciation to the study participants who kindly donated tissue to the Australian Prostate Cancer BioResource. The Australian Prostate Cancer BioResource is supported by the National Health and Medical Research Council of Australia Enabling Grant (no. 614296) and by a grant from the Prostate Cancer Foundation Australia.

Funding

This work was supported by the National Health and Medical Research Council (APP504702), the Prostate Cancer Foundation of Australia (projects YIG19 and PG2709) and the Austin Urology Research Foundation supported by the Urologists of the Austin Hospital, Melbourne, Victoria, Australia. The authors would like to express their appreciation to the study participants who kindly donated tissue to the Australian Prostate Cancer BioResource. The Australian Prostate Cancer BioResource is supported by the National Health and Medical Research Council of Australia Enabling Grant (no. 614296) and by a grant from the Prostate Cancer Foundation Australia.

Availability of data and materials

The datasets generated and analysed in the current study are available from the corresponding author on reasonable request.

Authors' contributions

GGG, GS and MS conceived, designed and successfully sought funding for the study. GGG was the principal investigator of the prostate study resources utilized. MS and ST coordinated, designed and supervised the molecular studies. MY carried out the laboratory-based work and drafted the manuscript. JP provided expert pathology review. APCB provided tissue samples. All authors read and approved the manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

This research using human tissue was carried out in accordance with the Declaration of Helsinki and was granted ethics approval by the Human Ethics Sub-Committee, University of Melbourne, Victoria, Australia (ethics ID: 1135850).

Author details

¹Genetic Epidemiology Laboratory, Department of Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia 3010. ²Department of Microbiology and Infectious Diseases, Royal Women's Hospital, Parkville, VIC, Australia 3052. ³Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia 3010. ⁴Murdoch Childrens Research Institute, Parkville, VIC, Australia 3052. ⁵Cancer Epidemiology and Intelligence Division, Cancer Epidemiology Centre, Cancer Council Victoria, Level 2, 615 St Kilda Road, Melbourne, VIC, Australia 3004. ⁶Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3, 207 Bouverie Street, Carlton, VIC, Australia 3053. ⁷Department of Surgery, University of Melbourne, Austin Health, 145 Studley Road, Heidelberg, VIC, Australia 3084. ⁸TissuPath, 92-96 Ricketts Road, Mount Waverley, VIC, Australia 3149. ⁹Human Genetics Foundation (HuGeF), Via Nizza, 52-10126 Torino, Italy. ¹⁰Australian Prostate Cancer BioResource, the Prostate Cancer Research Program, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia 3800.

Received: 29 August 2016 Accepted: 13 December 2016 Published online: 13 January 2017

References

1. Cohen RJ, Shannon BA, McNeal JE, Shannon T, Garrett KL. Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J Urol. 2005; 173:1969–74.

- Alexeyev OA, Marklund I, Shannon B, Golovleva I, Olsson J, Andersson C, et al. Direct visualization of Propionibacterium acnes in prostate tissue by multicolor fluorescent in situ hybridization assay. J Clin Microbiol. 2007;45:3721–8.
- Panguluri RCK, Long LO, Chen W, Wang S, Coulibaly A, Ukoli F, et al. COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis. 2004;25:961–6.
- Casey G, Neville PJ, Plummer SJ, Xiang Y, Krumroy LM, Klein EA, et al. RNASEL Arg462GIn variant is implicated in up to 13% of prostate cancer cases. Nat Genet. 2002;32:581–3. Nature Publishing Group.
- Chen Y-C, Giovannucci E, Lazarus R, Kraft P, Ketkar S, Hunter DJ. Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res. 2005;65:11771–8.
- Riley DE, Berger RE, Miner DC, Krieger JN. Diverse and related 16S rRNAencoding DNA sequences in prostate tissues of men with chronic prostatitis. J Clin Microbiol. 1998;36:1646–52.
- Alexeyev O, Bergh J, Marklund I, Thellenberg-Karlsson C, Wiklund F, Grönberg H, et al. Association between the presence of bacterial 16S RNA in prostate specimens taken during transurethral resection of prostate and subsequent risk of prostate cancer (Sweden). Cancer Causes Control. 2006;17:1127–33.
- Krieger JN, Riley DE, Vesella RL, Miner DC, Ross SO, Lange PH. Bacterial dna sequences in prostate tissue from patients with prostate cancer and chronic prostatitis. J Urol. 2000;164:1221–8.
- Sfanos KS, Sauvageot J, Fedor HL, Dick JD, De Marzo AM, Isaacs WB. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate. 2008;68:306–20.
- 10. Australian Prostate Cancer Bioresource [Internet]. apcbioresource.org.au. [cited 2016 Jun 7]. Available from: https://www.apcbioresource.org.au.
- Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Colloquium Paper: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011; 108 Suppl 1:4516–22.
- Sundquist A, Bigdeli S, Jalili R, Druzin ML, Waller S, Pullen KM, et al. Bacterial flora-typing with targeted, chip-based Pyrosequencing. BMC Microbiol. 2007;7:108.
- FastQC v0.10.1 [Internet]. bioinformatics.bbsrc.ac.uk. [cited 2016 Jun 7]. Available from: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc.
- 14. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Meth. 2010;7:335–6.
- 16. Greengenes [Internet]. greengenes.lbl.gov. [cited 2016 Jun 7]. Available from: http://greengenes.lbl.gov/cgi-bin/nph-index.cgi.
- 17. Nesoni [Internet]. https://github.com/Victorian-Bioinformatics-Consortium/ nesoni [cited 2016 Oct 19]. Available from: https://github.com/Victorian-Bioinformatics-Consortium/nesoni.
- David M, Dzamba M, Lister D, Ilie L, Brudno M. SHRiMP2: sensitive yet practical SHort Read Mapping. Bioinformatics. 2011;27:1011–2.
- Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
- 20. Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics. 2010;Chapter 11:Unit11.5.
- 21. Easy-Web-BLAST+ [Internet]. github.com. [cited 2016 Jun 7]. Available from: https://github.com/tseemann/easy-web-blast.
- 22. NCBI RefSeq [Internet]. ftp.ncbi.nlm.nih.gov. [cited 2016 Jun 7]. Available from: ftp://ftp.ncbi.nlm.nih.gov/refseq/release/viral/.
- Sutcliffe S, Viscidi RP, Till C, Goodman PJ, Hoque AM, Hsing AW, et al. Human papillomavirus types 16, 18, and 31 serostatus and prostate cancer risk in the Prostate Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev. 2010;19:614–8.
- Sutcliffe S, Alderete JF, Till C, Goodman PJ, Hsing AW, Zenilman JM, et al. Trichomonosis and subsequent risk of prostate cancer in the Prostate Cancer Prevention Trial. Int J Cancer. 2009;124:2082–7.
- Metzker ML. Sequencing technologies the next generation. Nat Rev Genet. 2010;11:31–46.
- Keay S, Zhang CO, Baldwin BR, Alexander RB. Polymerase chain reaction amplification of bacterial 16s rRNA genes in prostate biopsies from men without chronic prostatitis. Urology. 1999;53:487–91.

- Hochreiter WW, Duncan JL, Schaeffer AJ. Evaluation of the bacterial flora of the prostate using a 16S rRNA gene based polymerase chain reaction. J Urol. 2000;163:127–30.
- Leskinen MJ, Rantakokko-Jalava K, Manninen R, Leppilahti M, Marttila T, Kylmälä T, et al. Negative bacterial polymerase chain reaction (PCR) findings in prostate tissue from patients with symptoms of chronic pelvic pain syndrome (CPPS) and localized prostate cancer. Prostate. 2003;55:105–10.
- Gorelick JI, Senterfit LB, Vaughan ED. Quantitative bacterial tissue cultures from 209 prostatectomy specimens: findings and implications. J Urol. 1988;139:57–60.
- Mak TN, Fischer N, Laube B, Brinkmann V, Metruccio MME, Sfanos KS, et al. Propionibacterium acnes host cell tropism contributes to vimentin-mediated invasion and induction of inflammation. Cell Microbiol. 2012;14:1720–33.
- Kembel SW, Wu M, Eisen JA, Green JL. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput Biol. 2012;8:e1002743.
- Shannon BA, Cohen RJ, Garrett KL. Influence of 16S rDNA primer sequence mismatches on the spectrum of bacterial genera detected in prostate tissue by universal eubacterial PCR. Prostate. 2008;68:1487–91.
- Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol. 2004;186:2629–35.
- Jonasson J, Olofsson M, Monstein H-J. Classification, identification and subtyping of bacteria based on pyrosequencing and signature matching of 16S rDNA fragments. APMIS. 2002;110:263–72.
- 35. Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 2015;43:D593–8.

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit

